A simple quadratic kernel for Token Jumping

Joint work with: Moritz M¨uhlenthaler and Daniel W. Cranston

Benjamin Peyrille

Université Grenoble Alpes, G-SCOP

January 6th 2025

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of *I* as tokens \circ and vertices of *J* with targets \circledast .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledA .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

ISR Reachability - Token Jumping

Input: A simple graph $G = (V, E)$, two independent sets I and J of G of same size.

Output: YES if we can iteratively reach J from I using the Token Jumping rule, No otherwise.

Independent set reconfiguration

Let: $G = (V, E)$ be a simple graph,

 I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \circledA .

We want to **move** *l* to *J* iteratively, preserving the independent set property.

Token Jumping

Input: A simple graph $G = (V, E)$, two independent sets I and J of G of same size.

Output: YES if we can iteratively reach J from I using the Token Jumping rule, No otherwise.

Hardness

Hardness result (van der Zanden, 2015)

Token Jumping is PSPACE-complete even for subcubic graphs of bounded bandwidth.

Hardness

Hardness result (van der Zanden, 2015)

Token Jumping is PSPACE-complete even for subcubic graphs of bounded bandwidth.

A problem is **fixed-parameter tractable** (FPT) for some input **parameter** k if there exists an algorithm that solves it in time $O(f(k) \cdot \text{poly}(n))$ where f is an arbitrary computable function and n is the size of the instance.

Hardness

Hardness result (van der Zanden, 2015)

Token Jumping is PSPACE-complete even for subcubic graphs of bounded bandwidth.

A problem is **fixed-parameter tractable** (FPT) for some input **parameter** k if there exists an algorithm that solves it in time $O(f(k) \cdot \text{poly}(n))$ where f is an arbitrary computable function and n is the size of the instance.

Parameterized hardness result (Mouawad, 2017)

TOKEN JUMPING is $W[1]$ -hard (not FPT) when only parameterized by the number of tokens k.

Positive results: known kernels

Kernelization \implies FPT (bruteforce on $f(k)$ vertices) If the function f is polynomial, we say the problem admits a **polynomial kernel**.

Positive results: known kernels

Kernelization \implies FPT (bruteforce on $f(k)$ vertices) If the function f is polynomial, we say the problem admits a **polynomial kernel**.

- ▶ FPT on planar graphs and $K_{3,t}$ -free graphs (Ito et al, 2014).
- \blacktriangleright Polynomial kernel for $K_{t,t}$ -free graphs (Bousquet et al, 2017).
- Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al. 2018).

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g .

 $K_{3,3}$ is not planar $(g \neq 0)$

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g .

 $K_{3,3}$ embedded on the torus $(g = 1)$ $K_{3,3}$ is not planar $(g \neq 0)$

In a nutshell, the genus g of a graph G is the minimum number of handles required to draw G on a mug.

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P_{1} , 2024+)

TOKEN JUMPING parameterized by the genus g of the input graph and the number of tokens k admits a kernel of size $O((g+k)^2).$ Furthermore, this kernel does not require knowledge of the genus.

[The problem](#page-1-0) [Conclusion](#page-55-0) Conclusion Conclusion **Conclusion** Conclusion Conclusion $\frac{00}{200000}$

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P_{1} , 2024+)

TOKEN JUMPING parameterized by the genus g of the input graph and the number of tokens k admits a kernel of size $O((g+k)^2).$

Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

First step: Partition

- \blacktriangleright \top : vertices containing the independent sets
- ▶ C_{1-} : vertices neighboring at most one element of T
- \triangleright \mathcal{C}_2 : vertices neighboring exactly two elements of T
- \triangleright \mathcal{C}_{3+} : vertices neighboring at least three elements of T

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right/ 2 \right|$ is the maximum number of colors required to properly color a graph of genus g . If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right\rangle / 2 \right|$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right\rangle / 2 \right|$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right\rangle / 2 \right|$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right\rangle / 2 \right|$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right\rangle / 2 \right|$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right\rangle / 2 \right|$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right\rangle / 2 \right|$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

C_{1-} and C_{3+} : easily bounded

Heawood's number $H(g) = \left| \left(7 + \sqrt{1+48g} \right) \right/ 2 \right|$ is the maximum number of colors required to properly color a graph of genus g . If $|\mathcal{C}_{1-}| \geq H(g) \cdot k$, the instance is YES. So we can assume

 $|\mathcal{C}_{1-}| < H(g) \cdot k$.

Theorem (Bouchet, 1978)

A graph of genus g cannot have any $K_{3,4g+3}$ as a subgraph.

Using an auxillary graph, we can use Euler's formula to get

$$
|\mathcal{C}_{3+}|\leq 16g^2+16gk+8k.
$$

[The problem](#page-1-0) [Conclusion](#page-55-0)
 $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} \\
 & \text{0} \\
 & \text{0} \\
 & \text{0}\n\end{array}$ $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} \\
 & \text{0} \\
 & \text{0} \\
 & \text{0}\n\end{array}$ $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} \\
 & \text{0} \\
 & \text{0} \\
 & \text{0}\n\end{array}$

C_2 : not clear yet

Let
$$
C_{\{u,v\}}
$$
 be the **projection class** of $\{u, v\} \subseteq T$, that is $\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}\.$
Let $\{u, v\}$ such that $C_{\{u,v\}} \neq \emptyset$.

[The problem](#page-1-0) [Conclusion](#page-55-0)
 $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet\n\end{array}$ $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet\n\end{array}$ Conclusion

C_2 : not clear yet

Let
$$
C_{\{u,v\}}
$$
 be the **projection class** of $\{u, v\} \subseteq T$, that is $\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}\.$
Let $\{u, v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
There can be an arbitrary number of vertices in $C_{\{u,v\}}\$:

[The problem](#page-1-0) [Conclusion](#page-55-0)
 $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet\n\end{array}$ $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet\n\end{array}$ Conclusion

C_2 : not clear yet

Let
$$
C_{\{u,v\}}
$$
 be the **projection class** of $\{u, v\} \subseteq T$, that is $\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}\.$
Let $\{u, v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
There can be an arbitrary number of vertices in $C_{\{u,v\}}\$:

C_2 : not clear yet

Let
$$
C_{\{u,v\}}
$$
 be the **projection class** of $\{u, v\} \subseteq T$, that is
\n $\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}\.$
\nLet $\{u, v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
\nThere can be an arbitrary number of vertices in $C_{\{u,v\}}\$:
\n $C_{\{u,v\}}$

 $\{w:$

[The problem](#page-1-0) [Conclusion](#page-55-0)
 $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet\n\end{array}$ $\begin{array}{ccc}\n\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet\n\end{array}$ Conclusion

C_2 : not clear yet

Let
$$
C_{\{u,v\}}
$$
 be the **projection class** of $\{u, v\} \subseteq T$, that is
\n $\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}\.$
\nLet $\{u, v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
\nThere can be an arbitrary number of vertices in $C_{\{u,v\}}$:
\n $C_{\{u,v\}}$

Benjamin Peyrille 7/12

C_2 : not clear yet

Let
$$
C_{\{u,v\}}
$$
 be the **projection class** of $\{u, v\} \subseteq T$, that is
\n $\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}\.$
\nLet $\{u, v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
\nThere can be an arbitrary number of vertices in $C_{\{u,v\}}$:
\n $C_{\{u,v\}}$

Our goal: show $|C_2| = O((g + k)^2)$.

 $\{w : w\}$ Let $\{u,$

C_2 : not clear yet

Let
$$
C_{\{u,v\}}
$$
 be the **projection class** of $\{u, v\} \subseteq T$, that is
\n $\{w : w \in V - T \text{ s.t } N_T(w) = \{u, v\}\}\.$
\nLet $\{u, v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
\nThere can be an arbitrary number of vertices in $C_{\{u,v\}}\$:
\n $C_{\{u,v\}}$

Our goal: show $|C_2| = O((g + k)^2)$.

By Euler's formula, the number of non-empty projection classes is at most $6k + 6g$.

We will show that if any $\mathcal{C}_{\{u,v\}}$ is bigger than $8g+4k$, the problem is solved. Benjamin Peyrille **1996 Contract Contrac**

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u , v -paths on any graph of genus g is max $(1, 4g)$.

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u , v -paths on any graph of genus g is max $(1, 4g)$.

Hence, paths between u and v in $C_{\{u,v\}}$ divide the surface in at most 4g planar zones.

Anatomy of the zone

Each zone has two outer vertices and some inner vertices.

Inner vertices form induced linear forests in $C_{\{u,v\}}$ whose independent sets are large and easy to find.

 \blacktriangleright Vertices outside a zone cannot be adjacent to inner vertices of $C_{\{u,v\}}$.

 \blacktriangleright Vertices inside a zone can only be adjacent to two vertices of $C_{\{u,v\}}$.

Problem solved

$$
C_{\{u,v\}} \text{ is large } (8g + 4k) \implies \geq 4k \quad \text{inner vertices}
$$

\n
$$
\implies \geq 4k \quad \text{size linear forest}
$$

\n
$$
\implies 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}}
$$

Problem solved

$$
C_{\{u,v\}} \text{ is large } (8g + 4k) \implies \geq 4k \quad \text{inner vertices}
$$

$$
\implies \geq 4k \quad \text{size linear forest}
$$

$$
\implies 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}}
$$

$$
\bigvee_{0}\bigvee_{0}\bigvee_{k}\bigvee_{k}
$$

Problem solved

$$
C_{\{u,v\}} \text{ is large } (8g + 4k) \implies \geq 4k \quad \text{inner vertices}
$$

$$
\implies \geq 4k \quad \text{size linear forest}
$$

$$
\implies 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}}
$$

$$
\bigvee_{k=1}^{n} \bigvee
$$

Problem solved

$$
C_{\{u,v\}} \text{ is large } (8g + 4k) \implies \geq 4k \quad \text{inner vertices}
$$

$$
\implies \geq 4k \quad \text{size linear forest}
$$

$$
\implies 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}}
$$

$$
\bigvee_{\alpha} \bigwedge_{\alpha} \bigvee_{\alpha} \bigvee_{\alpha} \bigvee_{\alpha} \bigvee_{\alpha} \bigvee_{\alpha} \bigvee_{\alpha} \bigvee_{\alpha}
$$

Problem solved

$$
C_{\{u,v\}} \text{ is large } (8g + 4k) \implies \geq 4k \quad \text{inner vertices}
$$

$$
\implies \geq 4k \quad \text{size linear forest}
$$

$$
\implies 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}}
$$

$$
\bigvee_{i=1}^{n} \bigvee_{k=1}^{n} \bigvee
$$

Problem solved

$$
C_{\{u,v\}} \text{ is large } (8g + 4k) \implies \geq 4k \quad \text{inner vertices}
$$

$$
\implies \geq 4k \quad \text{size linear forest}
$$

$$
\implies 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}}
$$

Recall each token of I is adjacent to at most two inner vertices of $\mathcal{C}_{\{u,v\}}.$ We can move all tokens from 1 to $\,_{\{u,v\}}$ if 1 is not frozen. We then do the same for J.

So we can assume all $C_{\{u,v\}}$ are of size at most $8g + 4k$.

Problem solved... or is it?

$$
C_{\{u,v\}} \text{ is large } (8g + 4k) \implies \geq 4k \quad \text{inner vertices} \\ \implies \geq 4k \quad \text{size linear forest} \\ \implies \quad 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}}
$$

Recall each token of I is adjacent to at most two inner vertices of $\mathcal{C}_{\{u,v\}}.$ We can move all tokens from 1 to $\,_{\{u,v\}}$ if 1 is not frozen. We then do the same for J.

So we can assume all $C_{\{u,v\}}$ are of size at most $8g + 4k$.

Problem: knowing the genus of the graph or a crossing-free drawing, is hard.

We will find that large linear forest without any information on the genus.

[The problem](#page-1-0) [Conclusion](#page-55-0) **[Kernelization](#page-21-0)** Conclusion Conclus

$$
1 \, Z := C_{\{u,v\}}
$$

[The problem](#page-1-0) [Conclusion](#page-55-0) **[Kernelization](#page-21-0)** Conclusion Conclus

1
$$
Z := C_{\{u,v\}}
$$

\n2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
\n3
\n1 If v has at least 3 neighbors in $C_{\{u,v\}}$ then
\n $Z \leftarrow Z - N(v)$

[The problem](#page-1-0) [Conclusion](#page-55-0) **[Kernelization](#page-21-0)** Conclusion Conclus

1
$$
Z := C_{\{u,v\}}
$$

\n2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
\n3
\n1 If v has at least 3 neighbors in $C_{\{u,v\}}$ then
\n $Z \leftarrow Z - N(v)$

[The problem](#page-1-0) [Conclusion](#page-55-0)
 $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} & \text{0}\n\end{array}$ $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} & \text{0}\n\end{array}$ $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} & \text{0}\n\end{array}$

1
$$
Z := C_{\{u,v\}}
$$

\n2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
\n3 if v has at least 3 neighbors in $C_{\{u,v\}}$ then
\n $Z \leftarrow Z - N(v)$
\n4 for $w \in Z$ do
\n5 If w has degree at least 3 in $G[Z]$ then

[The problem](#page-1-0) [Conclusion](#page-55-0)
 $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} & \text{0}\n\end{array}$ $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} & \text{0}\n\end{array}$ $\begin{array}{ccc}\n & \text{Kernelization} \\
 & \text{Kernelization} \\
 & \text{0} & \text{0}\n\end{array}$

1
$$
Z := C_{\{u,v\}}
$$

\n2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
\n3
\n**if** v has at least 3 neighbors in $C_{\{u,v\}}$ then
\n $Z \leftarrow Z - N(v)$
\n4 for $w \in Z$ do
\n5
\n**if** w has degree at least 3 in $G[Z]$ then
\n $Z \leftarrow Z - w$

 880°

The algorithm

1 $Z := C_{\{u,v\}}$ 2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do 3 **if** v has at least 3 neighbors in $C_{\{u,v\}}$ then $Z \leftarrow Z - N(v)$ 4 for $w \in Z$ do 5 | if w has degree at least 3 in $G[Z]$ then $Z \leftarrow Z - w$ ⁶ Remove arbitrarily one vertex from each cycle in $G[Z]$ 7 return Z

This procedure outputs a linear forest of size at least equal to the number of inner vertices, without any information on the genus.

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

Conclusion

We give a kernelization algorithm with quadratic size $O((g+k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- \blacktriangleright Can there be a kernel of size $O(g^2+gk+k)$ for planar graphs and for graphs in general?
- \triangleright What other problems can be parameterized in such a way?

