A simple quadratic kernel for Token Jumping
Joint work with: Moritz Mtihlenthaler and Daniel W. Cranston

Benjamin Peyrille

Université Grenoble Alpes, G-SCOP

January 6th 2025

The problem
@000

Independent set reconfiguration

Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration

Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Sliding Token Jumping
Slide along edges Jump anywhere

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration

Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Sliding Token Jumping
Slide along edges Jump anywhere

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration
Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Sliding Token Jumping

Slide along edges Jump anywhere

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration

Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Sliding Token Jumping
Slide along edges Jump anywhere

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration

Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Sliding Token Jumping
Slide along edges Jump anywhere

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration

Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Sliding Token Jumping
Slide along edges Jump anywhere

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration
Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Sliding Token Jumping

Slide along edges Jump anywhere

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration
Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.

We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

ISR Reachability - Token Jumping
Input: A simple graph G = (V, E), two independent sets / and J of G of same

size.
Output: YES if we can iteratively reach J from / using the Token Jumping rule,

NoO otherwise.

Benjamin Peyrille 1/12

The problem
@000

Independent set reconfiguration

Let: G = (V, E) be a simple graph,
I, J be two independent sets of V of identical sizes.
We represent vertices of | as tokens © and vertices of J with targets @.

We want to move [/ to J iteratively, preserving the independent set property.

Token Jumping

Input: A simple graph G = (V, E), two independent sets / and J of G of same
size.

Output: YES if we can iteratively reach J from / using the Token Jumping rule,
NoO otherwise.

Benjamin Peyrille 1/12

The problem
0000

Hardness

Hardness result (van der Zanden, 2015)

ToOKEN JUMPING is PSPACE-complete even for subcubic graphs of bounded
bandwidth.

Benjamin Peyrille 2/12

The problem
0000

Hardness

Hardness result (van der Zanden, 2015)

ToOKEN JUMPING is PSPACE-complete even for subcubic graphs of bounded
bandwidth.

A problem is fixed-parameter tractable (FPT) for some input parameter k if there
exists an algorithm that solves it in time O(f(k) - poly(n)) where f is an arbitrary
computable function and n is the size of the instance.

Benjamin Peyrille 2/12

The problem
0000

Hardness

Hardness result (van der Zanden, 2015)

ToOKEN JUMPING is PSPACE-complete even for subcubic graphs of bounded
bandwidth.

A problem is fixed-parameter tractable (FPT) for some input parameter k if there
exists an algorithm that solves it in time O(f(k) - poly(n)) where f is an arbitrary
computable function and n is the size of the instance.

Parameterized hardness result (Mouawad, 2017)

TOKEN JUMPING is W([1]-hard (not FPT) when only parameterized by the number of
tokens k.

Benjamin Peyrille 2/12

The problem
[e]e] o]

Positive results: known kernels
Graph G Graph G’

poly-time
— |Kernelization algorithm| | —

n vertices f(k) vertices

Kernelization = FPT (bruteforce on f(k) vertices)
If the function f is polynomial, we say the problem admits a polynomial kernel.

Benjamin Peyrille 3/12

The problem
[e]e] o]

Positive results: known kernels
Graph G Graph G’

poly-time
— |Kernelization algorithm| | —

n vertices f(k) vertices

Kernelization = FPT (bruteforce on f(k) vertices)
If the function f is polynomial, we say the problem admits a polynomial kernel.

» FPT on planar graphs and K3 -free graphs (Ito et al, 2014).
» Polynomial kernel for K¢ ;-free graphs (Bousquet et al, 2017).
» Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al. 2018).

Benjamin Peyrille 3/12

The problem
[e]e]e]]

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g.

Benjamin Peyrille 4/12

The problem
[e]e]e]]

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g.

K33 is not planar (g # 0)

Benjamin Peyrille 4/12

The problem Kernelization Conclusion
o]

oooe [o]e}
00000

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g.

K33 is not planar (g # 0) K33 embedded on the torus (g = 1)

In a nutshell, the genus g of a graph G is
the minimum number of handles required to draw G on a mug.

Benjamin Peyrille 4/12

The problem
[e]e]e]]

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g.

Main result (Cranston, Miihlenthaler, P., 2024+)

TOKEN JUMPING parameterized by the genus g of the input graph and the number of
tokens k admits a kernel of size O((g + k)?).
Furthermore, this kernel does not require knowledge of the genus.

Benjamin Peyrille 4/12

The problem
[e]e]e]]

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g.

Main result (Cranston, Miihlenthaler, P., 2024+)

TOKEN JUMPING parameterized by the genus g of the input graph and the number of
tokens k admits a kernel of size O((g + k)?).
Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs Kernel size For genus g
K3 ¢-free (Ito et al, 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k,4g + 6)
K¢ ¢-free (Bousquet et al, 17) O(f(t) - kt'3") O(h(g) - k(4 +3)3%7%)
d-degenerate (Lokshtanov et al, 18) | (2d 4 1)(2d + 1)!(2k — 1)29+1 | (2H(g) — 1)(2H(g) — 1)!(2k — 1)?H(e)1
all graphs (This presentation!) O((g + k)?) -

Benjamin Peyrille

4/12

Kernelization
[1]

First step: Partition

» T: vertices containing the independent sets

» (Ci_: vertices neighboring at most one element of T
» (C: vertices neighboring exactly two elements of T

» (Cs3.: vertices neighboring at least three elements of T

\ ,
Benjamin Peyrille ~-=-" 5/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 + 48g)/2] is the maximum
number of colors required to properly color a graph of genus g.
If |C1—| > H(g) - k, the instance is YES. So we can assume

IC1-| < H(g) - k.

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 +48g)/2| is the maximum
number of colors required to properly color a graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

ICi_|=4-4=16 Planar: H(G) =4

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 +48g)/2| is the maximum
number of colors required to properly color a graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

ICi_|=4-4=16 Planar: H(G) =4

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 +48g)/2| is the maximum
number of colors required to properly color a graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

Cr|=4-4=16

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 +48g)/2| is the maximum
number of colors required to properly color a graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

Cr|=4-4=16

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 +48g)/2| is the maximum
number of colors required to properly color a graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

ICi_|=4-4=16 Planar: H(G) =4

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 +48g)/2| is the maximum
number of colors required to properly color a graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

Planar: H(G) =4

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 +48g)/2| is the maximum
number of colors required to properly color a graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

ICi_|=4-4=16 Planar: H(G) =4

Benjamin Peyrille 6/12

Kernelization
oe

C1_ and C3,: easily bounded

Heawood's number H(g) = |(7 + /1 + 48g)/2] is the maximum
number of colors required to properly color a graph of genus g.
If |C1—| > H(g) - k, the instance is YES. So we can assume

IC1-| < H(g) - k.

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3 4.3 as a subgraph.

Using an auxillary graph, we can use Euler's formula to get

C34| < 16g° + 16gk + 8k.

Benjamin Peyrille 6/12

Kernelization
00000

C>: not clear yet

Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy,) # 0.

Benjamin Peyrille 7/12

Kernelization
00000

Co: not clear yet
Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy,) # 0.
There can be an arbitrary number of vertices in Cy, y:

u

Cluvy

Benjamin Peyrille 7/12

Kernelization
00000

Co: not clear yet
Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy,) # 0.
There can be an arbitrary number of vertices in Cy, y:

u

Cluvy

Benjamin Peyrille 7/12

Kernelization
00000

Co: not clear yet
Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy,) # 0.
There can be an arbitrary number of vertices in Cy, y:

u

Cluvy

Benjamin Peyrille 7/12

Kernelization
00000

Co: not clear yet
Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy,) # 0.
There can be an arbitrary number of vertices in Cy, y:

Benjamin Peyrille 7/12

Kernelization
00000

Co: not clear yet
Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy,) # 0.
There can be an arbitrary number of vertices in Cy, y:

Benjamin Peyrille 7/12

Kernelization
00000

Co: not clear yet
Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy,) # 0.
There can be an arbitrary number of vertices in Cy, y:

Our goal: show |Co| = O((g + k)?).

By Euler's formula, the number of non-empty projection classes is at most 6k + 6g.

We will show that if any Cy, ,} is bigger than 8g + 4k, the problem is solved.

Benjamin Peyrille 7/12

The prob\em Kernelization gondusioh
Planar zones
Theorem (Malni¢ and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of
genus g is max(1,4g).

Benjamin Peyrille 8/12

The problem Kernelization Conclusion

08000

Planar zones
Theorem (Malni¢ and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of
genus g is max(1,4g).

Hence, paths between u and v in Cy, .y divide the surface in at most 4g planar zones.
Y N S i £

SO W :

Four zones for Cy, ,y on a torus.

Benjamin Peyrille 8/12

Kernelization
00000

Anatomy of the zone

Each zone has two outer vertices and some inner
vertices.

Inner vertices form induced linear forests in Cy, 1
whose independent sets are large and easy to find.

> Vertices outside a zone cannot be adjacent to inner vertices of Cy, 1.

> Vertices inside a zone can only be adjacent to two vertices of Cy, 1.

Benjamin Peyrille 9/12

Kernelization
000e0

Problem solved

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k size independent set Ty,) in Cyy 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
We can move all tokens from / to Ty, if | is not frozen. We then do the same for J.

Benjamin Peyrille 10/12

Kernelization
000e0

Problem solved

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k size independent set Ty,) in Cyy 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
We can move all tokens from / to Ty, if | is not frozen. We then do the same for J.

YV V.

Benjamin Peyrille 10/12

Kernelization
000e0

Problem solved

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k size independent set Ty,) in Cyy 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
We can move all tokens from / to Ty, if | is not frozen. We then do the same for J.

VY

Benjamin Peyrille 10/12

Kernelization
000e0

Problem solved

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k size independent set Ty,) in Cyy 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
We can move all tokens from / to Ty, if | is not frozen. We then do the same for J.

VYV,

Benjamin Peyrille 10/12

Kernelization
000e0

Problem solved

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k size independent set Ty,) in Cyy 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
We can move all tokens from / to Ty, if | is not frozen. We then do the same for J.

PR'E

Benjamin Peyrille 10/12

Kernelization
000e0

Problem solved

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k size independent set Ty,) in Cyy 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
We can move all tokens from / to Ty, if | is not frozen. We then do the same for J.

So we can assume all Cy, y are of size at most 8g + 4k.

Benjamin Peyrille 10/12

Kernelization
000e0

Problem solved... or is it?

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k size independent set Ty,) in Cy, 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
We can move all tokens from / to Ty, if | is not frozen. We then do the same for J.

So we can assume all Cy, ,y are of size at most 8g + 4k.

Problem: knowing the genus of the graph or a crossing-free drawing, is hard.
We will find that large linear forest without any information on the genus.

Benjamin Peyrille 10/12

Kernelization
0000e

The algorithm

1 Z:=Cyy

Benjamin Peyrille 11/12

Kernelization
0000e

The algorithm

17:= C{uﬁv}

2 forveV— (C{UN} UY) do

3 if v has at least 3 neighbors in Cy, ,, then
L Z <+ Z—N(v)

Benjamin Peyrille 11/12

Kernelization
0000e

The algorithm

17:= C{uﬁv}

2 forveV— (C{UN} UY) do

3 if v has at least 3 neighbors in Cy, ,, then
L Z <+ Z—N(v)

Benjamin Peyrille 11/12

Kernelization
0000e

The algorithm

1 7= C{uﬁv}

2forveV— (C{UN}] Y) do

3 if v has at least 3 neighbors in Cy, ,, then
Z <+ Z—N(v)

4 for w € Z do

5 if w has degree at least 3 in G[Z] then
Z+—7Z—-w

Benjamin Peyrille 11/12

Kernelization
0000e

The algorithm

1 7= C{uﬁv}

2forveV— (C{UN}] Y) do

3 if v has at least 3 neighbors in Cy, ,, then
Z <+ Z—N(v)

4 for w € Z do

5 if w has degree at least 3 in G[Z] then
Z+—7Z—-w

Benjamin Peyrille 11/12

Kernelization
0000e

The algorithm

1 Z:=Cyy
2 forveV— (C{u‘v} UY) do
3 if v has at least 3 neighbors in Cy, ,, then
L Z <+ Z—N(v)
4 for w € Z do
if w has degree at least 3 in G[Z] then
L Z+—7Z—-w
Remove arbitrarily one vertex from each cycle in
G[2]
7 return Z

@

o

Benjamin Peyrille 11/12

Kernelization
0000e

The algorithm

1 7= C{uﬁv}

2 forveV— (C{u‘v} UY) do

3 if v has at least 3 neighbors in Cy, ,, then
L Z <+ Z—N(v)

4 for w € Z do

L if w has degree at least 3 in G[Z] then

@

Z+—7Z—w
6 Remove arbitrarily one vertex from each cycle in
G[Z]
7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

lmper

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

I lgper

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

[lBper

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

[lmpor

~ - -

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

RgEct et

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

gt

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

gzt

Benjamin Peyrille 12/12

Conclusion
[]

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)?) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:

» Can there be a kernel of size O(g? + gk + k) for planar graphs and for graphs in
general?

» What other problems can be parameterized in such a way?

[lmper

Benjamin Peyrille 12/12

	The problem
	Overview

	Kernelization
	Solving C2

	Conclusion

