A simple quadratic kernel for Token Jumping

Joint work with: Moritz Mühlenthaler and Daniel W. Cranston

Benjamin Peyrille

Université Grenoble Alpes, G-SCOP

January 6th 2025

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to move I to J iteratively, preserving the independent set property.

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to **move** I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to **move** I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Kernelization

Conclusion 0

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Kernelization

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to **move** I to J iteratively, preserving the independent set property.

ISR Reachability - Token Jumping

Input: A simple graph G = (V, E), two independent sets I and J of G of same size.

Output: YES if we can iteratively reach J from I using the Token Jumping rule, NO otherwise.

Kernelization

Independent set reconfiguration

Let: G = (V, E) be a simple graph,

I, J be two independent sets of V of identical sizes.

We represent vertices of I as tokens \circ and vertices of J with targets \otimes .

We want to **move** I to J iteratively, preserving the independent set property.

Token Jumping

Input: A simple graph G = (V, E), two independent sets I and J of G of same size.

Output: YES if we can iteratively reach J from I using the Token Jumping rule, NO otherwise.

Kernelization

Hardness

Hardness result (van der Zanden, 2015)

 ${\rm TOKEN}\ J{\rm UMPING}$ is PSPACE-complete even for subcubic graphs of bounded bandwidth.

Kernelization

Hardness

Hardness result (van der Zanden, 2015)

 ${\rm TOKEN}\ J{\rm UMPING}$ is PSPACE-complete even for subcubic graphs of bounded bandwidth.

A problem is **fixed-parameter tractable** (FPT) for some input **parameter** k if there exists an algorithm that solves it in time $O(f(k) \cdot \text{poly}(n))$ where f is an arbitrary computable function and n is the size of the instance.

Kernelization

Hardness

Hardness result (van der Zanden, 2015)

 ${\rm TOKEN}\ J{\rm UMPING}$ is PSPACE-complete even for subcubic graphs of bounded bandwidth.

A problem is **fixed-parameter tractable** (FPT) for some input **parameter** k if there exists an algorithm that solves it in time $O(f(k) \cdot poly(n))$ where f is an arbitrary computable function and n is the size of the instance.

Parameterized hardness result (Mouawad, 2017)

TOKEN JUMPING is W[1]-hard (not FPT) when only parameterized by the number of tokens k.

Kernelization

Positive results: known kernels

Kernelization \implies FPT (bruteforce on f(k) vertices) If the function f is polynomial, we say the problem admits a **polynomial kernel**.

Kernelization

Positive results: known kernels

Kernelization \implies FPT (bruteforce on f(k) vertices) If the function f is polynomial, we say the problem admits a **polynomial kernel**.

- ▶ FPT on planar graphs and $K_{3,t}$ -free graphs (Ito et al, 2014).
- ▶ Polynomial kernel for $K_{t,t}$ -free graphs (Bousquet et al, 2017).
- ▶ Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al. 2018).

Kernelization

Conclusion O

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

Kernelization

Conclusion 0

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

 $K_{3,3}$ is not planar ($g \neq 0$)

Kernelization

Conclusion O

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

 $K_{3,3}$ is not planar (g
eq 0) $K_{3,3}$ embedded on the torus (g = 1)

In a nutshell, the genus g of a graph G is the minimum number of handles required to draw G on a mug.

Kernelization

Conclusion O

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

Main result (Cranston, Mühlenthaler, **P.**, 2024+)

TOKEN JUMPING parameterized by the genus g of the input graph and the number of tokens k admits a kernel of size $O((g + k)^2)$.

Furthermore, this kernel does not require knowledge of the genus.

Kernelization

Conclusion O

Surfaces

Let G be a simple graph and let g be its **genus**, that is, the minimal integer such that G has a crossing-free drawing on an orientable surface of genus g.

Main result (Cranston, Mühlenthaler, **P.**, 2024+)

TOKEN JUMPING parameterized by the genus g of the input graph and the number of tokens k admits a kernel of size $O((g + k)^2)$.

Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs	Kernel size	For genus g
$K_{3,t}$ -free (Ito et al, 14)	Ramsey((2t+1)k,t+3)	Ramsey((8g+7)k, 4g+6)
$K_{t,t}$ -free (Bousquet et al, 17)	$O(f(t) \cdot k^{t \cdot 3^t})$	$O(h(g) \cdot k^{(4g+3) \cdot 3^{4g+3}})$
d-degenerate (Lokshtanov et al, 18)	$(2d+1)(2d+1)!(2k-1)^{2d+1}$	$(2H(g)-1)(2H(g)-1)!(2k-1)^{2H(g)-1}$
all graphs (This presentation!)	$O((g+k)^2)$	-

Kernelization

Conclusion o

First step: Partition

- ► *T*: vertices containing the independent sets
- C_{1-} : vertices neighboring at most one element of T
- C_2 : vertices neighboring exactly two elements of T
- C_{3+} : vertices neighboring at least three elements of T

Kernelization

Conclusion O

\mathcal{C}_{1-} and $\mathcal{C}_{3+}{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion o

\mathcal{C}_{1-} and $\mathcal{C}_{3+}{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion o

\mathcal{C}_{1-} and $\mathcal{C}_{3+}\text{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion o

\mathcal{C}_{1-} and $\mathcal{C}_{3+}\text{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion o

\mathcal{C}_{1-} and $\mathcal{C}_{3+}{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion o

\mathcal{C}_{1-} and $\mathcal{C}_{3+}{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion o

\mathcal{C}_{1-} and $\mathcal{C}_{3+}{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion

\mathcal{C}_{1-} and $\mathcal{C}_{3+}{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

Kernelization

Conclusion

\mathcal{C}_{1-} and $\mathcal{C}_{3+}{:}$ easily bounded

Heawood's number $H(g) = \lfloor (7 + \sqrt{1 + 48g})/2 \rfloor$ is the maximum number of colors required to properly color a graph of genus g. If $|\mathcal{C}_{1-}| \ge H(g) \cdot k$, the instance is YES. So we can assume

 $|\mathcal{C}_{1-}| < H(g) \cdot k.$

Theorem (Bouchet, 1978)

A graph of genus g cannot have any $K_{3,4g+3}$ as a subgraph.

Using an auxillary graph, we can use Euler's formula to get

$$|\mathcal{C}_{3+}| \le 16g^2 + 16gk + 8k.$$

 $\overset{\bigcirc}{\overset{\bigcirc}{\bullet}}_{\bullet}^{\circ\circ}_{\circ\circ\circ\circ\circ}$

Conclusion O

\mathcal{C}_2 : not clear yet

Let
$$C_{\{u,v\}}$$
 be the **projection class** of $\{u,v\} \subseteq T$, that is $\{w : w \in V - T \text{ s.t } N_T(w) = \{u,v\}\}$.
Let $\{u,v\}$ such that $C_{\{u,v\}} \neq \emptyset$.

 $\overset{\circ\circ}{\bullet}\overset{\circ\circ}{\bullet}\overset{\circ\circ\circ}{\bullet}\overset{\circ\circ\circ}{\bullet}\overset{\circ\circ}{\bullet}\overset{\circ\circ}{\bullet}\overset{\circ}{\bullet$

Conclusion 0

\mathcal{C}_2 : not clear yet

Let
$$C_{\{u,v\}}$$
 be the **projection class** of $\{u,v\} \subseteq T$, that is $\{w : w \in V - T \text{ s.t } N_T(w) = \{u,v\}\}$.
Let $\{u,v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

 $\overset{\circ\circ}{\bullet}\overset{\circ\circ}{\bullet}\overset{\circ\circ\circ}{\bullet}\overset{\circ\circ\circ}{\bullet}\overset{\circ\circ}{\bullet}\overset{\circ\circ}{\bullet}\overset{\circ}{\bullet$

Conclusion 0

\mathcal{C}_2 : not clear yet

Let
$$C_{\{u,v\}}$$
 be the **projection class** of $\{u,v\} \subseteq T$, that is $\{w : w \in V - T \text{ s.t } N_T(w) = \{u,v\}\}$.
Let $\{u,v\}$ such that $C_{\{u,v\}} \neq \emptyset$.
There can be an arbitrary number of vertices in $C_{\{u,v\}}$:

Kernelization 00000

C_2 : not clear yet

v

Kernelization 00000

C_2 : not clear yet

Let $\{u,$

 $\overset{\bigcirc}{\overset{\bigcirc}{\bullet}}_{\bullet}^{\circ\circ}_{\circ\circ\circ\circ\circ}$

Conclusion 0

\mathcal{C}_2 : not clear yet

Our goal: show $|\mathcal{C}_2| = O((g+k)^2)$.

Kernelization

Conclusion 0

C_2 : not clear yet

Our goal: show $|\mathcal{C}_2| = O((g+k)^2)$.

By Euler's formula, the number of non-empty projection classes is at most 6k + 6g.

We will show that if any $C_{\{u,v\}}$ is bigger than 8g + 4k, the problem is solved. Benjamin Peyrille

 $\overset{\bigcirc}{\underset{\bigcirc}{\overset{\bigcirc}{}}}_{\overset{\bigcirc}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{\circ}{}}_{\overset{\circ}{}}}_{\overset{}}}_{\overset{}}}_{\overset{}}}_{\overset{}}}_{\overset{}}}_{\overset{}}}_{\overset{}}}}_{\overset{$

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of genus g is max(1, 4g).

Kernelization

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of genus g is max(1, 4g).

Hence, paths between u and v in $C_{\{u,v\}}$ divide the surface in at most 4g planar zones.

Kernelization

Anatomy of the zone

Each zone has two **outer** vertices and some **inner** vertices.

Inner vertices form induced linear forests in $C_{\{u,v\}}$ whose independent sets are large and easy to find.

• Vertices outside a zone <u>cannot</u> be adjacent to inner vertices of $C_{\{u,v\}}$.

• Vertices inside a zone can only be adjacent to <u>two</u> vertices of $C_{\{u,v\}}$.

Kernelization

Conclusion 0

Problem solved

$$\begin{array}{ll} C_{\{u,v\}} \text{ is large } (8g+4k) & \Longrightarrow & \geq 4k & \text{inner vertices} \\ & \implies & \geq 4k & \text{size linear forest} \\ & \implies & 2k & \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}} \end{array}$$

Kernelization

Conclusion 0

Problem solved

$$\begin{array}{ll} C_{\{u,v\}} \text{ is large } (8g+4k) & \Longrightarrow & \geq 4k & \text{inner vertices} \\ & \implies & \geq 4k & \text{size linear forest} \\ & \implies & 2k & \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}} \end{array}$$

Kernelization

Conclusion 0

Problem solved

$$\begin{array}{ll} C_{\{u,v\}} \text{ is large } (8g+4k) & \Longrightarrow & \geq 4k & \text{inner vertices} \\ & \implies & \geq 4k & \text{size linear forest} \\ & \implies & 2k & \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}} \end{array}$$

Kernelization

Conclusion 0

Problem solved

$$\begin{array}{ll} C_{\{u,v\}} \text{ is large } (8g+4k) & \Longrightarrow & \geq 4k & \text{inner vertices} \\ & \implies & \geq 4k & \text{size linear forest} \\ & \implies & 2k & \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}} \end{array}$$

Kernelization

Conclusion 0

Problem solved

$$\begin{array}{ll} C_{\{u,v\}} \text{ is large } (8g+4k) & \Longrightarrow & \geq 4k & \text{inner vertices} \\ & \implies & \geq 4k & \text{size linear forest} \\ & \implies & 2k & \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}} \end{array}$$

Kernelization

Conclusion 0

Problem solved

$$\begin{array}{ll} C_{\{u,v\}} \text{ is large } (8g+4k) & \Longrightarrow & \geq 4k & \text{inner vertices} \\ & \Longrightarrow & \geq 4k & \text{size linear forest} \\ & \Longrightarrow & 2k & \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}} \end{array}$$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

So we can assume all $C_{\{u,v\}}$ are of size at most 8g + 4k.

Conclusion O

Problem solved... or is it?

$$\begin{array}{ll} C_{\{u,v\}} \text{ is large } (8g+4k) & \Longrightarrow & \geq 4k \quad \text{inner vertices} \\ & \Longrightarrow & \geq 4k \quad \text{size linear forest} \\ & \Longrightarrow & 2k \quad \text{size independent set } T_{\{u,v\}} \text{ in } C_{\{u,v\}} \end{array}$$

Recall each token of I is adjacent to at most two inner vertices of $C_{\{u,v\}}$. We can move all tokens from I to $T_{\{u,v\}}$ if I is not frozen. We then do the same for J.

So we can assume all
$$C_{\{u,v\}}$$
 are of size at most $8g + 4k$.

Problem: knowing the genus of the graph or a crossing-free drawing, is hard.

We will find that large linear forest without any information on the genus.

Kernelization ○○ ○○○○○● Conclusion 0

The algorithm

1
$$Z := C_{\{u,v\}}$$

Benjamin Peyrille

Kernelization ○○ ○○○○○● Conclusion O

The algorithm

1
$$Z := C_{\{u,v\}}$$

2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
3 $\left[\begin{array}{c} \text{if } v \text{ has at least 3 neighbors in } C_{\{u,v\}} \text{ then} \\ Z \leftarrow Z - N(v) \end{array}\right]$

Kernelization ○○ ○○○○○● Conclusion 0

The algorithm

1
$$Z := C_{\{u,v\}}$$

2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
3 $\left[\begin{array}{c} \text{if } v \text{ has at least 3 neighbors in } C_{\{u,v\}} \text{ then} \\ Z \leftarrow Z - N(v) \end{array}\right]$

Kernelization

Conclusion 0

The algorithm

1
$$Z := C_{\{u,v\}}$$

2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
3 $\begin{bmatrix} \text{if } v \text{ has at least 3 neighbors in } C_{\{u,v\}} \text{ then} \\ Z \leftarrow Z - N(v) \end{bmatrix}$
4 for $w \in Z$ do

5 **if** w has degree at least 3 in G[Z] then $Z \leftarrow Z - w$

Kernelization ○○ ○○○○○● Conclusion 0

The algorithm

1
$$Z := C_{\{u,v\}}$$

2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do
3 $\begin{bmatrix} \text{if } v \text{ has at least 3 neighbors in } C_{\{u,v\}} \text{ then} \\ Z \leftarrow Z - N(v) \end{bmatrix}$
4 for $w \in Z$ do

5 **if** w has degree at least 3 in G[Z] then $Z \leftarrow Z - w$

Kernelization ○○ ○○○○● Conclusion 0

The algorithm

1 $Z := C_{\{u,v\}}$ 2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do 3 $\begin{bmatrix} \text{if } v \text{ has at least 3 neighbors in } C_{\{u,v\}} \text{ then } \\ Z \leftarrow Z - N(v) \end{bmatrix}$

4 for $w \in Z$ do

- 5 **if** w has degree at least 3 in G[Z] then $Z \leftarrow Z - w$
- ${\bf 6}\;$ Remove arbitrarily one vertex from each cycle in ${\cal G}[Z]$

7 return Z

Kernelization ○○ ○○○○● Conclusion 0

The algorithm

1 $Z := C_{\{u,v\}}$ 2 for $v \in V - (C_{\{u,v\}} \cup Y)$ do 3 $\left\lfloor \begin{array}{c} \text{if } v \text{ has at least 3 neighbors in } C_{\{u,v\}} \text{ then} \\ Z \leftarrow Z - N(v) \end{array} \right.$ 4 for $w \in Z$ do 5 $\left\lfloor \begin{array}{c} \text{if } w \text{ has degree at least 3 in } G[Z] \text{ then} \end{array} \right.$

6 Remove arbitrarily one vertex from each cycle in G[Z]

7 return Z

This procedure outputs a linear forest of size at least equal to the number of inner vertices, without any information on the genus.

Kernelization

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

Kernelization

Conclusion

Conclusion

We give a kernelization algorithm with quadratic size $O((g + k)^2)$ for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the input graph.

- ► Can there be a kernel of size O(g² + gk + k) for planar graphs and for graphs in general?
- ► What other problems can be parameterized in such a way?

