
A simple quadratic kernel for Token Jumping
Joint work with: Moritz Mühlenthaler and Daniel W. Cranston

Benjamin Peyrille
Université Grenoble Alpes, G-SCOP

January 6th 2025

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

ISR Reachability - Token Jumping
Input: A simple graph G = (V ,E), two independent sets I and J of G of same
size.
Output: Yes if we can iteratively reach J from I using the Token Jumping rule,
No otherwise.

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Independent set reconfiguration

Let: G = (V ,E) be a simple graph,
I , J be two independent sets of V of identical sizes.

We represent vertices of I as tokens and vertices of J with targets .

We want to move I to J iteratively, preserving the independent set property.

Token Jumping
Input: A simple graph G = (V ,E), two independent sets I and J of G of same
size.
Output: Yes if we can iteratively reach J from I using the Token Jumping rule,
No otherwise.

Benjamin Peyrille 1/12

The problem Kernelization Conclusion

Hardness

Hardness result (van der Zanden, 2015)

Token Jumping is PSPACE-complete even for subcubic graphs of bounded
bandwidth.

A problem is fixed-parameter tractable (FPT) for some input parameter k if there
exists an algorithm that solves it in time O(f (k) · poly(n)) where f is an arbitrary
computable function and n is the size of the instance.

Parameterized hardness result (Mouawad, 2017)

Token Jumping is W [1]-hard (not FPT) when only parameterized by the number of
tokens k.

Benjamin Peyrille 2/12

The problem Kernelization Conclusion

Hardness

Hardness result (van der Zanden, 2015)

Token Jumping is PSPACE-complete even for subcubic graphs of bounded
bandwidth.

A problem is fixed-parameter tractable (FPT) for some input parameter k if there
exists an algorithm that solves it in time O(f (k) · poly(n)) where f is an arbitrary
computable function and n is the size of the instance.

Parameterized hardness result (Mouawad, 2017)

Token Jumping is W [1]-hard (not FPT) when only parameterized by the number of
tokens k.

Benjamin Peyrille 2/12

The problem Kernelization Conclusion

Hardness

Hardness result (van der Zanden, 2015)

Token Jumping is PSPACE-complete even for subcubic graphs of bounded
bandwidth.

A problem is fixed-parameter tractable (FPT) for some input parameter k if there
exists an algorithm that solves it in time O(f (k) · poly(n)) where f is an arbitrary
computable function and n is the size of the instance.

Parameterized hardness result (Mouawad, 2017)

Token Jumping is W [1]-hard (not FPT) when only parameterized by the number of
tokens k.

Benjamin Peyrille 2/12

The problem Kernelization Conclusion

Positive results: known kernels

Graph G

n vertices

Kernelization algorithm

Graph G ′

f (k) vertices

→ →
poly-time

Kernelization =⇒ FPT (bruteforce on f (k) vertices)
If the function f is polynomial, we say the problem admits a polynomial kernel.

▶ FPT on planar graphs and K3,t-free graphs (Ito et al, 2014).
▶ Polynomial kernel for Kt,t-free graphs (Bousquet et al, 2017).
▶ Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al. 2018).

Benjamin Peyrille 3/12

The problem Kernelization Conclusion

Positive results: known kernels

Graph G

n vertices

Kernelization algorithm

Graph G ′

f (k) vertices

→ →
poly-time

Kernelization =⇒ FPT (bruteforce on f (k) vertices)
If the function f is polynomial, we say the problem admits a polynomial kernel.

▶ FPT on planar graphs and K3,t-free graphs (Ito et al, 2014).
▶ Polynomial kernel for Kt,t-free graphs (Bousquet et al, 2017).
▶ Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al. 2018).

Benjamin Peyrille 3/12

The problem Kernelization Conclusion

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P., 2024+)

Token Jumping parameterized by the genus g of the input graph and the number of
tokens k admits a kernel of size O((g + k)2).
Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al, 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k , 4g + 6)

Kt,t-free (Bousquet et al, 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al, 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 4/12

The problem Kernelization Conclusion

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g .

K3,3 is not planar (g ̸= 0)

Main result (Cranston, Mühlenthaler, P., 2024+)

Token Jumping parameterized by the genus g of the input graph and the number of
tokens k admits a kernel of size O((g + k)2).
Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al, 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k , 4g + 6)

Kt,t-free (Bousquet et al, 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al, 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 4/12

The problem Kernelization Conclusion

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g .

K3,3 embedded on the torus (g = 1)

In a nutshell, the genus g of a graph G is
the minimum number of handles required to draw G on a mug.

K3,3 is not planar (g ̸= 0)

Main result (Cranston, Mühlenthaler, P., 2024+)

Token Jumping parameterized by the genus g of the input graph and the number of
tokens k admits a kernel of size O((g + k)2).
Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al, 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k , 4g + 6)

Kt,t-free (Bousquet et al, 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al, 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 4/12

The problem Kernelization Conclusion

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P., 2024+)

Token Jumping parameterized by the genus g of the input graph and the number of
tokens k admits a kernel of size O((g + k)2).
Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al, 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k , 4g + 6)

Kt,t-free (Bousquet et al, 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al, 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 4/12

The problem Kernelization Conclusion

Surfaces

Let G be a simple graph and let g be its genus, that is, the minimal integer such that
G has a crossing-free drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P., 2024+)

Token Jumping parameterized by the genus g of the input graph and the number of
tokens k admits a kernel of size O((g + k)2).
Furthermore, this kernel does not require knowledge of the genus.

Positive kernelization results applied on graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al, 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k , 4g + 6)

Kt,t-free (Bousquet et al, 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al, 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 4/12

The problem Kernelization Conclusion

First step: Partition
▶ T : vertices containing the independent sets
▶ C1−: vertices neighboring at most one element of T
▶ C2: vertices neighboring exactly two elements of T
▶ C3+: vertices neighboring at least three elements of T

C3+

T

C1−

C2

Benjamin Peyrille 5/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

k = 4

Planar: H(G) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

k = 4

Planar: H(G) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

k = 4

Planar: H(G) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

k = 4

Planar: H(G) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

k = 4

Planar: H(G) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

k = 4

Planar: H(G) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

k = 4

Planar: H(G) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C1− and C3+: easily bounded

Heawood’s number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the maximum

number of colors required to properly color a graph of genus g .
If |C1−| ≥ H(g) · k, the instance is Yes. So we can assume

|C1−| < H(g) · k.

Theorem (Bouchet, 1978)

A graph of genus g cannot have any K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k .

Benjamin Peyrille 6/12

The problem Kernelization Conclusion

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.

There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: show |C2| = O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

We will show that if any C{u,v} is bigger than 8g + 4k , the problem is solved.

Benjamin Peyrille 7/12

The problem Kernelization Conclusion

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: show |C2| = O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

We will show that if any C{u,v} is bigger than 8g + 4k , the problem is solved.

Benjamin Peyrille 7/12

The problem Kernelization Conclusion

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: show |C2| = O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

We will show that if any C{u,v} is bigger than 8g + 4k , the problem is solved.

Benjamin Peyrille 7/12

The problem Kernelization Conclusion

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: show |C2| = O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

We will show that if any C{u,v} is bigger than 8g + 4k , the problem is solved.

Benjamin Peyrille 7/12

The problem Kernelization Conclusion

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: show |C2| = O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

We will show that if any C{u,v} is bigger than 8g + 4k , the problem is solved.

Benjamin Peyrille 7/12

The problem Kernelization Conclusion

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: show |C2| = O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

We will show that if any C{u,v} is bigger than 8g + 4k , the problem is solved.

Benjamin Peyrille 7/12

The problem Kernelization Conclusion

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: show |C2| = O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

We will show that if any C{u,v} is bigger than 8g + 4k , the problem is solved.
Benjamin Peyrille 7/12

The problem Kernelization Conclusion

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v -paths on any graph of
genus g is max(1, 4g).

Hence, paths between u and v in C{u,v} divide the surface in at most 4g planar zones.

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y4

u

v

Four zones for C{u,v} on a torus.

Benjamin Peyrille 8/12

The problem Kernelization Conclusion

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v -paths on any graph of
genus g is max(1, 4g).

Hence, paths between u and v in C{u,v} divide the surface in at most 4g planar zones.

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y4

u

v

Four zones for C{u,v} on a torus.
Benjamin Peyrille 8/12

The problem Kernelization Conclusion

Anatomy of the zone

Each zone has two outer vertices and some inner
vertices.

Inner vertices form induced linear forests in C{u,v}
whose independent sets are large and easy to find.

u

v

a

b

▶ Vertices outside a zone cannot be adjacent to inner vertices of C{u,v}.

▶ Vertices inside a zone can only be adjacent to two vertices of C{u,v}.

Benjamin Peyrille 9/12

The problem Kernelization Conclusion

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
We can move all tokens from I to T{u,v} if I is not frozen. We then do the same for J.

Benjamin Peyrille 10/12

The problem Kernelization Conclusion

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
We can move all tokens from I to T{u,v} if I is not frozen. We then do the same for J.

k

2k

Benjamin Peyrille 10/12

The problem Kernelization Conclusion

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
We can move all tokens from I to T{u,v} if I is not frozen. We then do the same for J.

k

2k

Benjamin Peyrille 10/12

The problem Kernelization Conclusion

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
We can move all tokens from I to T{u,v} if I is not frozen. We then do the same for J.

k

2k

Benjamin Peyrille 10/12

The problem Kernelization Conclusion

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
We can move all tokens from I to T{u,v} if I is not frozen. We then do the same for J.

k

2k

Benjamin Peyrille 10/12

The problem Kernelization Conclusion

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
We can move all tokens from I to T{u,v} if I is not frozen. We then do the same for J.

So we can assume all C{u,v} are of size at most 8g + 4k .

Benjamin Peyrille 10/12

The problem Kernelization Conclusion

Problem solved... or is it?

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
We can move all tokens from I to T{u,v} if I is not frozen. We then do the same for J.

So we can assume all C{u,v} are of size at most 8g + 4k .

Problem: knowing the genus of the graph or a crossing-free drawing, is hard.

We will find that large linear forest without any information on the genus.

Benjamin Peyrille 10/12

The problem Kernelization Conclusion

The algorithm

1 Z := C{u,v}

2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

The problem Kernelization Conclusion

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

The problem Kernelization Conclusion

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

The problem Kernelization Conclusion

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

The problem Kernelization Conclusion

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

The problem Kernelization Conclusion

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

The problem Kernelization Conclusion

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 11/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

The problem Kernelization Conclusion

Conclusion
We give a kernelization algorithm with quadratic size O((g + k)2) for Token Jumping.

Our algorithm uses very simple rules and requires no information on the genus of the
input graph.

Open question:
▶ Can there be a kernel of size O(g2 + gk + k) for planar graphs and for graphs in

general?
▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 12/12

	The problem
	Overview

	Kernelization
	Solving C2

	Conclusion

