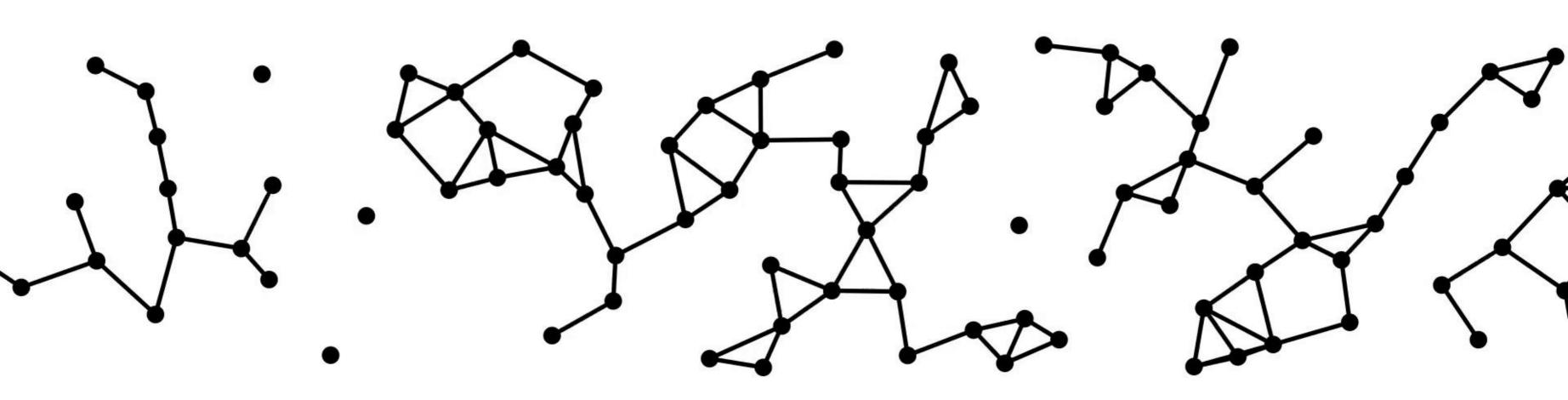
Modélisation mathématique par les graphes Benjamin Peyrille

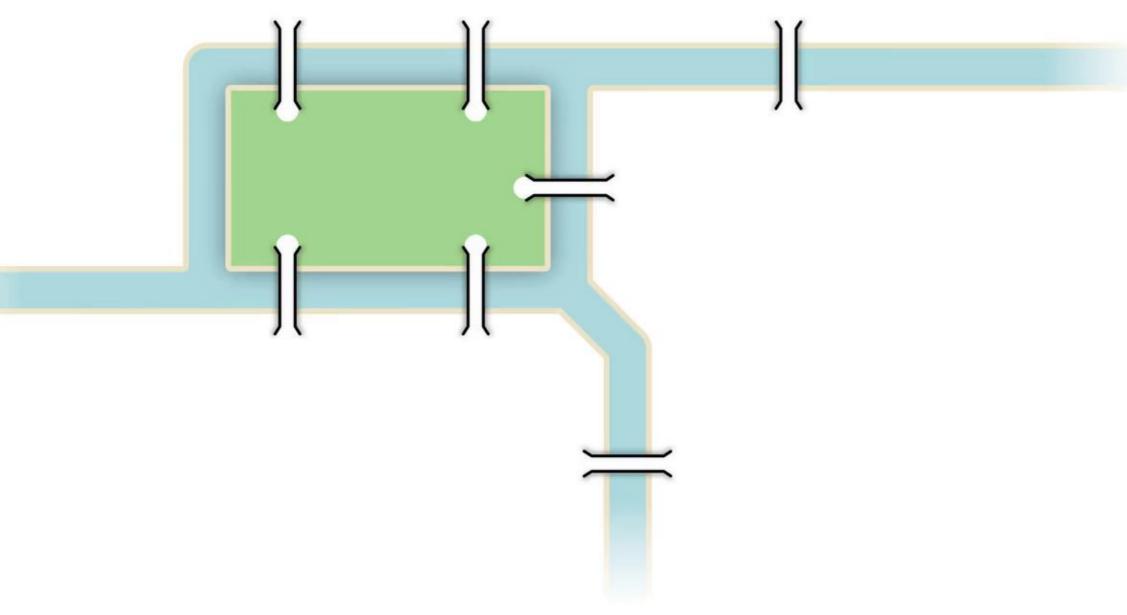
Laboratoire G-SCOP, Université Grenoble Alpes

Modélisation mathématique par les graphes Benjamin Peyrille

Laboratoire G-SCOP, Université Grenoble Alpes



Les 7 ponts de Königsberg

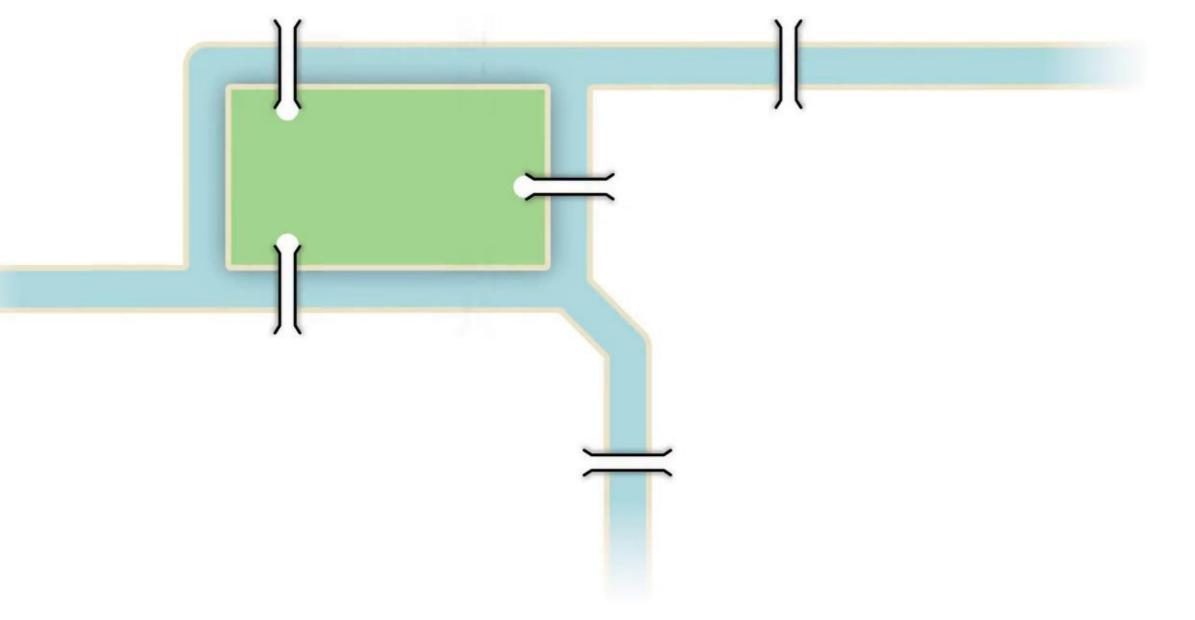


Leonhard Euler

1735

Est-il possible de traverser tous les ponts une seule et unique fois?

Les 5 ponts de Kaliningrad

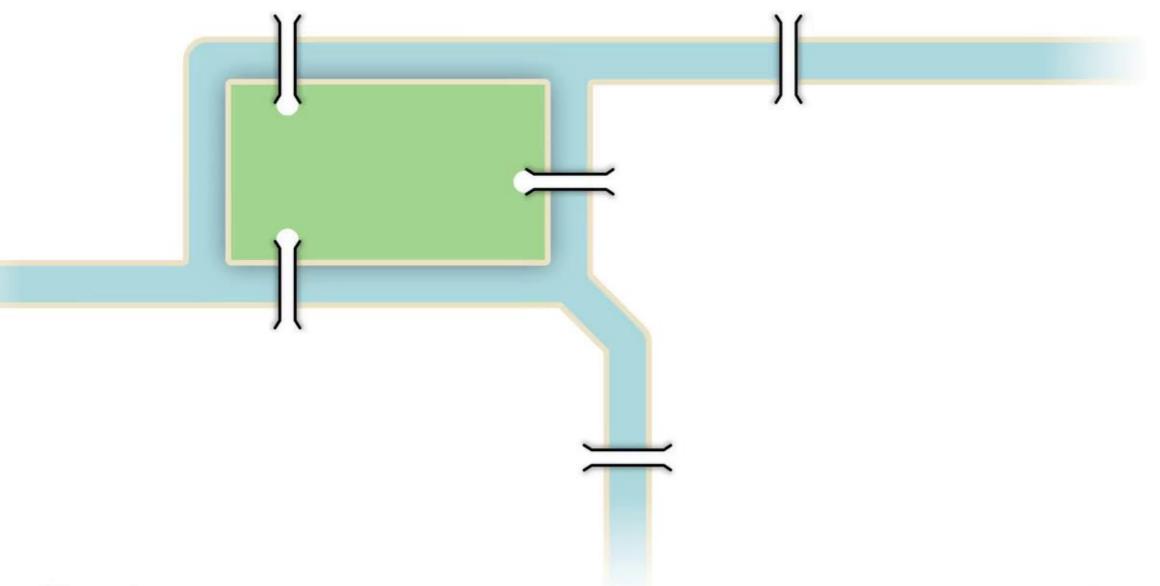


Leonhard Euler

1735

Est-il possible de traverser tous les ponts une seule et unique fois?

Les 5 ponts de Kaliningrad

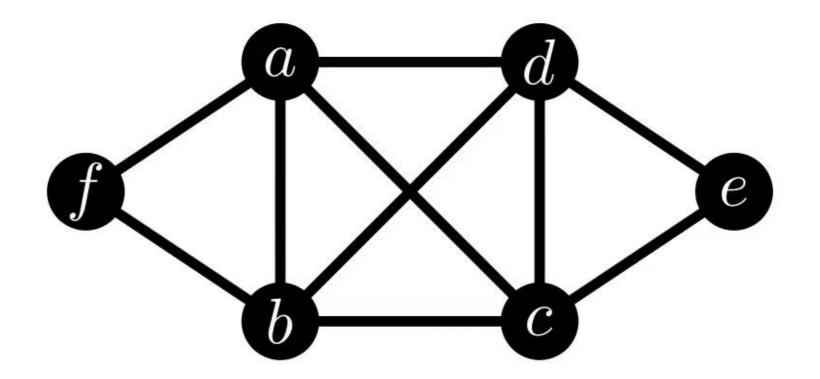


Leonhard Euler

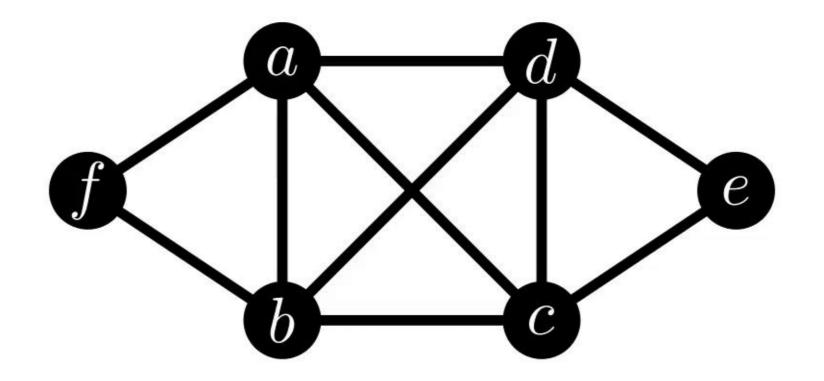
1735

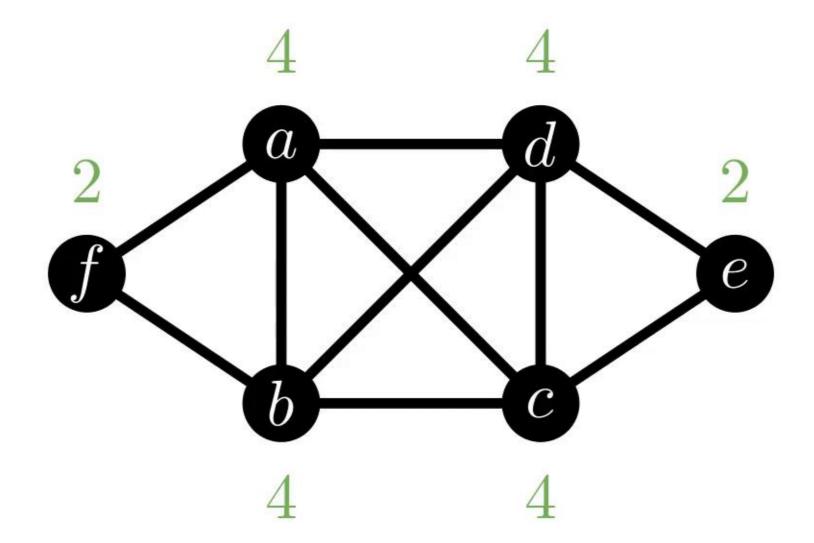
Est-il possible de traverser tous les ponts une seule et unique fois ? Et retourner au point de départ ?

Définition d'un graphe G = (S, A)

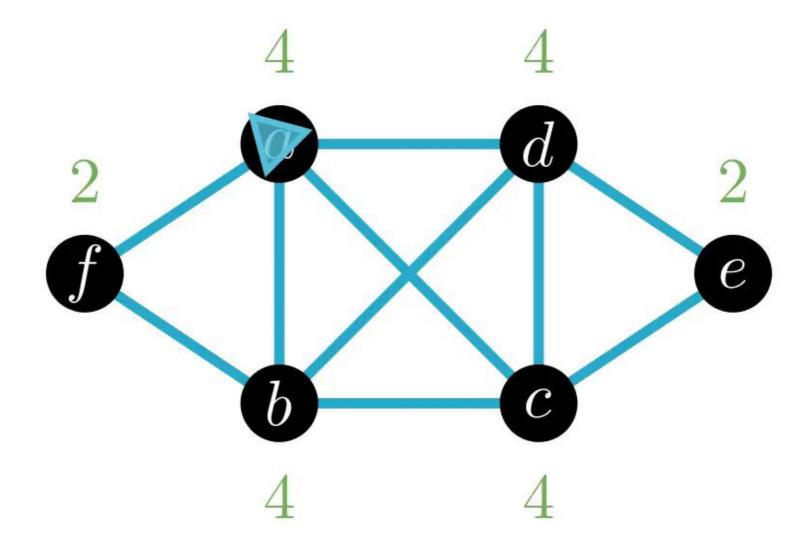


- \bullet Ensemble S de sommets
- Ensemble A d'arêtes

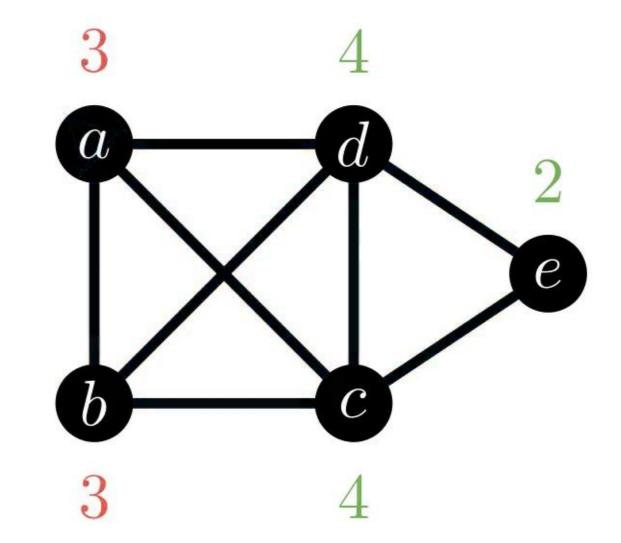




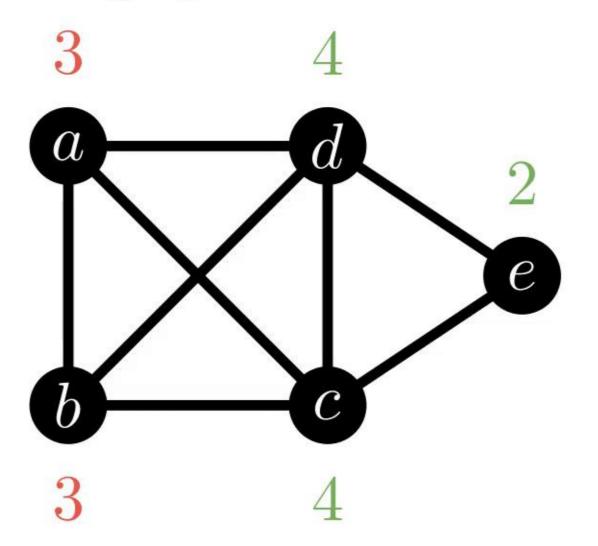
Le degré d(v) d'un sommet v est le nombre d'arêtes incidentes à v. Le degré de tous les sommets doit être pair.



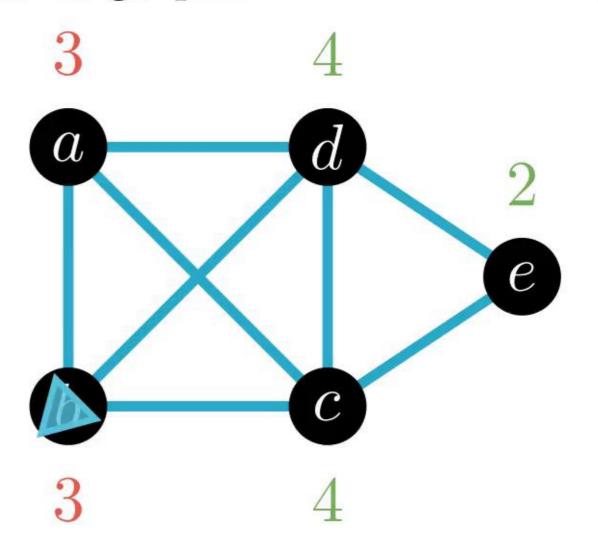
Le **degré** d(v) d'un sommet v est le nombre d'arêtes incidentes à v. Le degré de tous les sommets doit être pair.



Le **degré** d(v) d'un sommet v est le nombre d'arêtes incidentes à v. Le degré de tous les sommets doit être pair. Peut-on dessiner ce graphe sans lever le crayon?

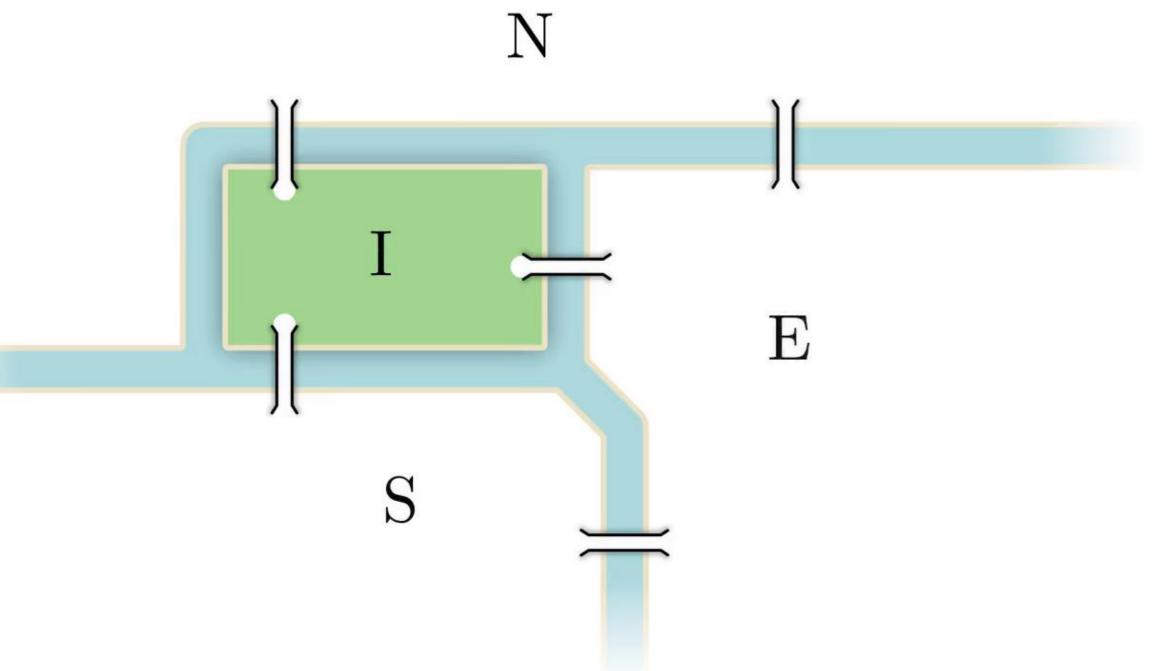


Le **degré** d(v) d'un sommet v est le nombre d'arêtes incidentes à v. Au plus deux sommets doivent avoir un degré impair. Peut-on dessiner ce graphe sans lever le crayon?



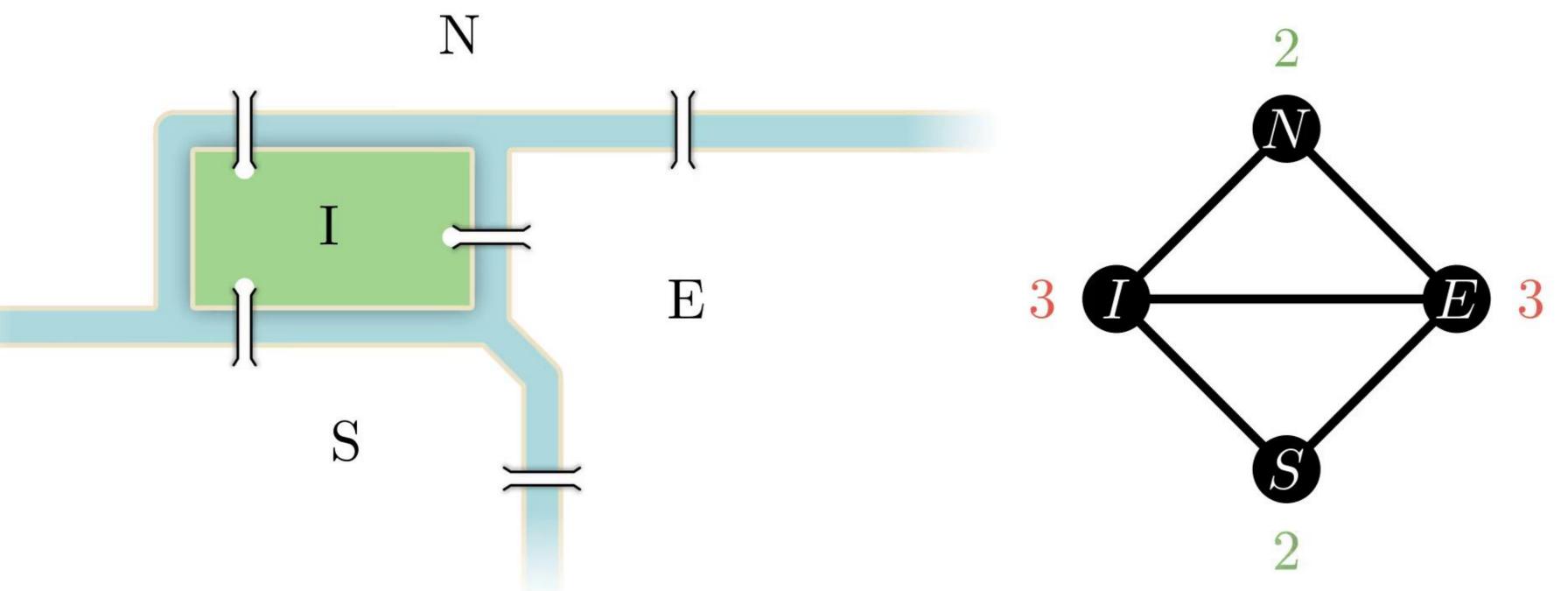
Le **degré** d(v) d'un sommet v est le nombre d'arêtes incidentes à v. Au plus deux sommets doivent avoir un degré impair. ren en religiosia de la composition de

Les 5 ponts de Kaliningrad



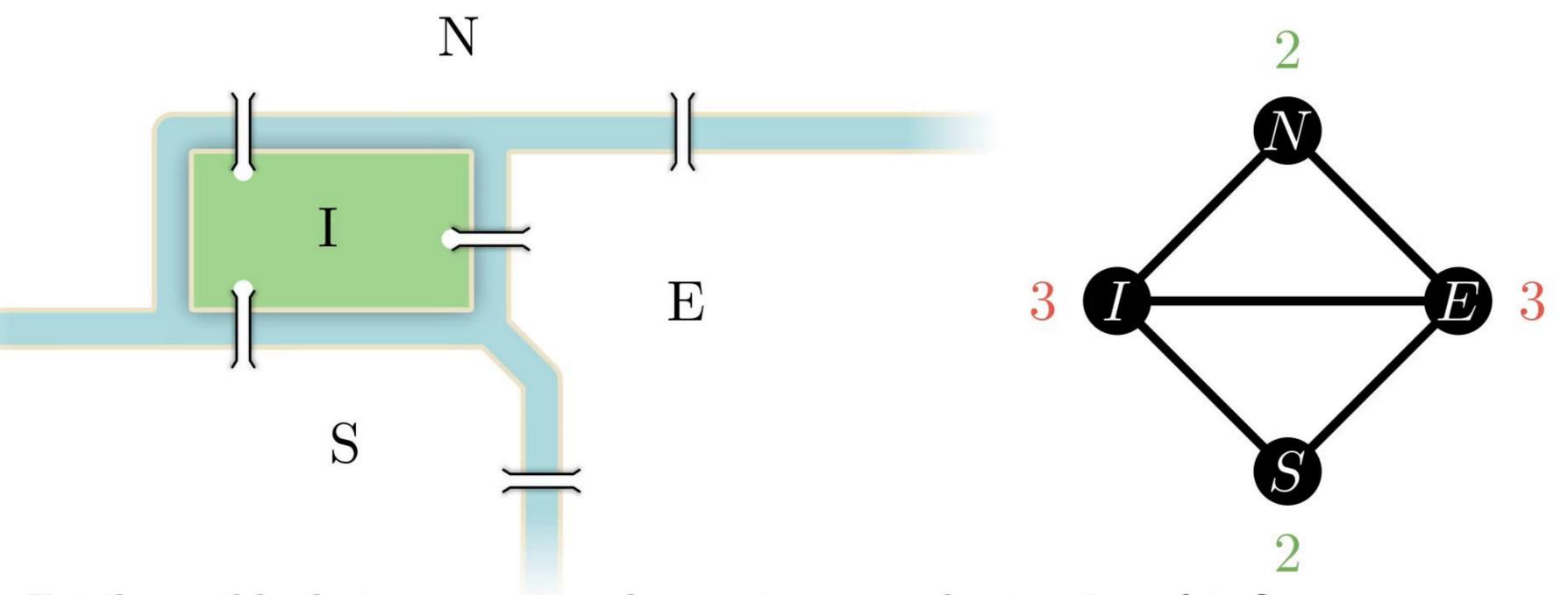
Est-il possible de traverser tous les ponts une seule et unique fois?

Les 5 ponts de Kaliningrad



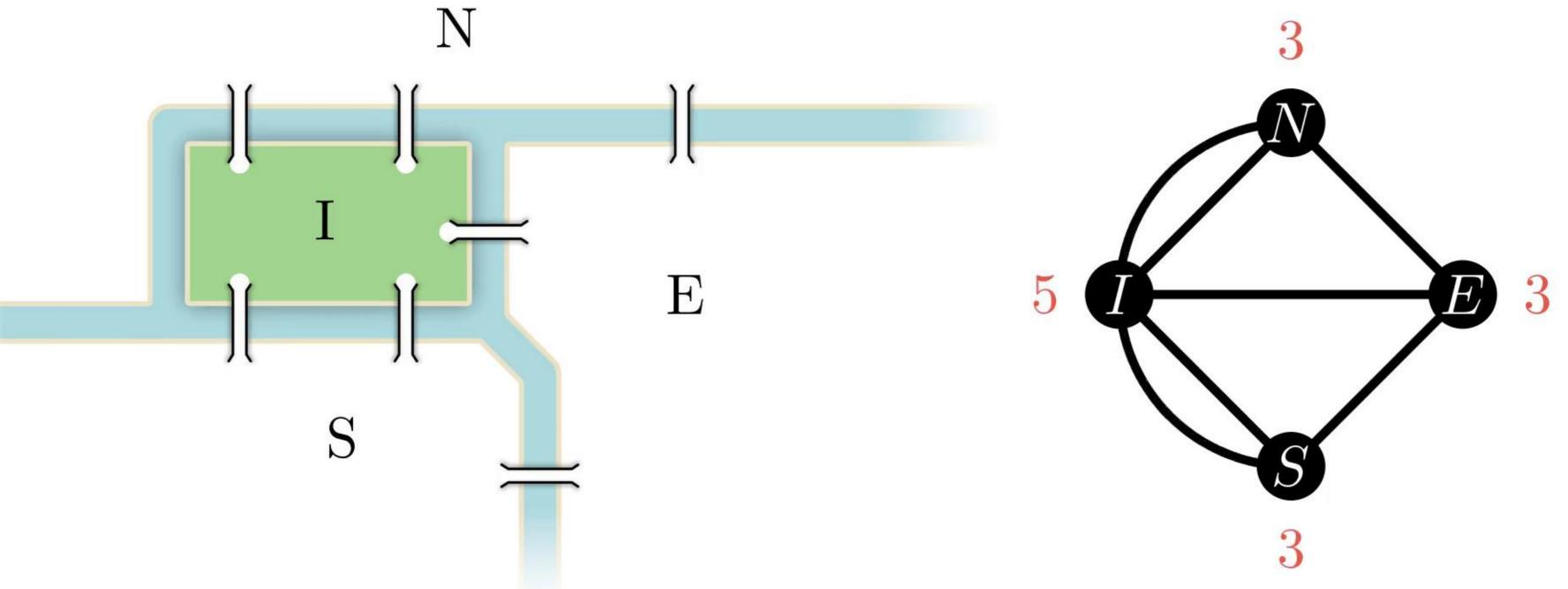
Est-il possible de traverser tous les ponts une seule et unique fois?

Les 5 ponts de Kaliningrad



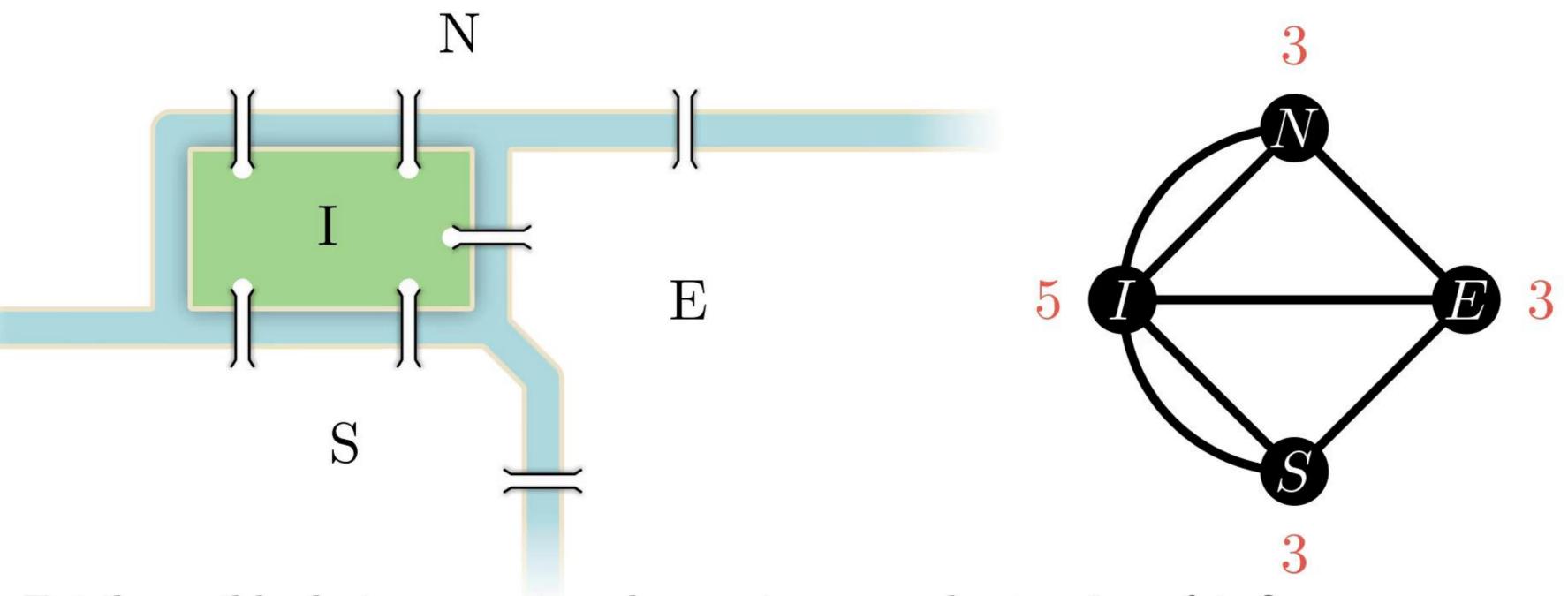
Est-il possible de traverser tous les ponts une seule et unique fois ? Oui, mais sans retourner au point d'origine.

Les 7 ponts de Königsberg



Est-il possible de traverser tous les ponts une seule et unique fois?

Les 7 ponts de Königsberg



Est-il possible de traverser tous les ponts une seule et unique fois ? Impossible, il y a trop de sommets de degré impair.

Un modèle mathématique est une description abstraite d'une situation réelle à l'aide de représentations mathématiques (ici les graphes).

Quels problèmes réels peut-on représenter à l'aide de graphes?

Un modèle mathématique est une description abstraite d'une situation réelle à l'aide de représentations mathématiques (ici les graphes).

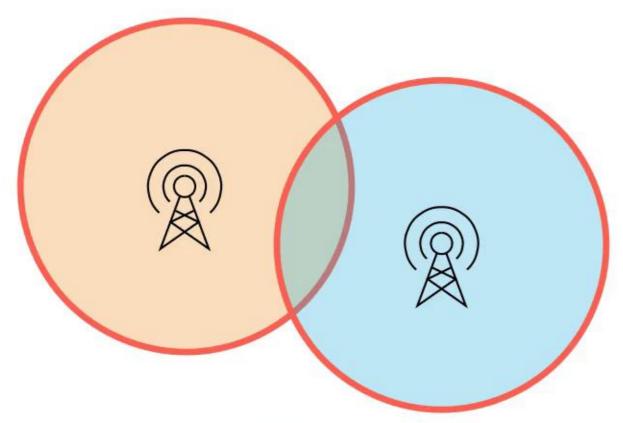
Quels problèmes réels peut-on représenter à l'aide de graphes ?

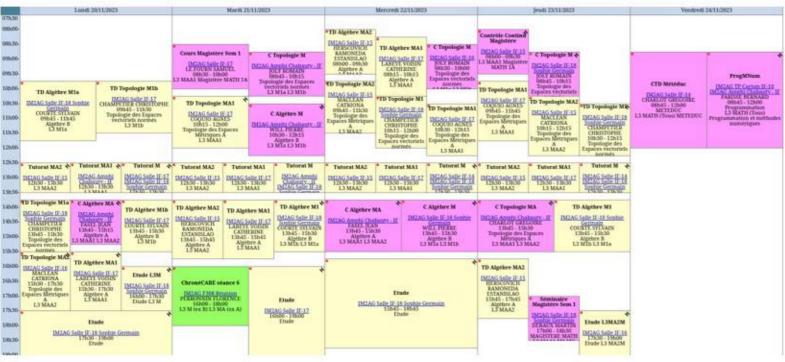
- Plus court chemin (GPS)
- Résolution de jeux (Échecs, Go...)
- Flux économiques (géopolitique, industrie, trading...)
- Réseaux sociaux et simulations d'épidémies
- Optimisation des programmes informatiques

Ce dont on va parler :

Ce dont on va parler:

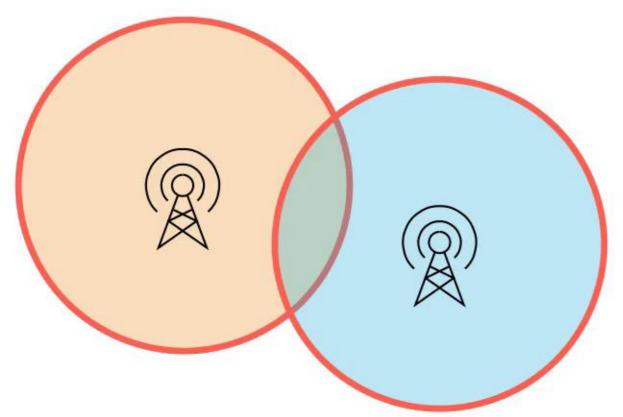
Incompatibilités





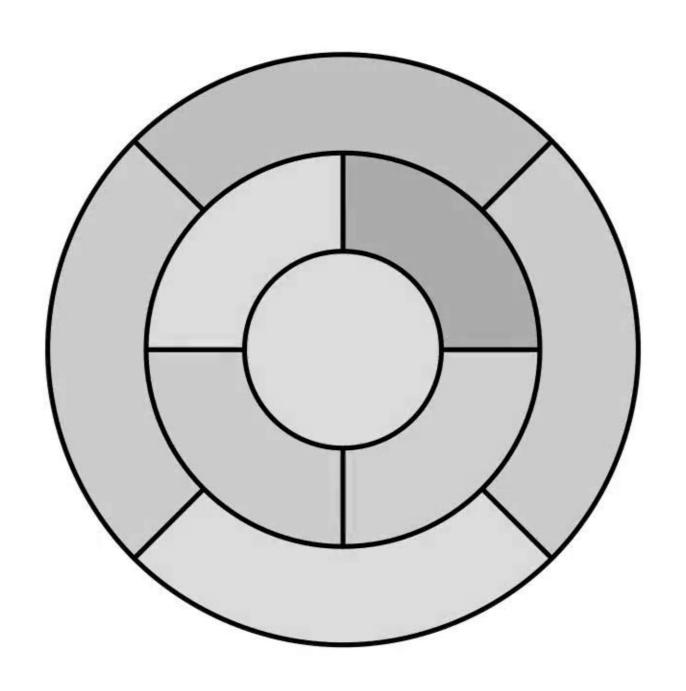
Ce dont on va parler:

Incompatibilités

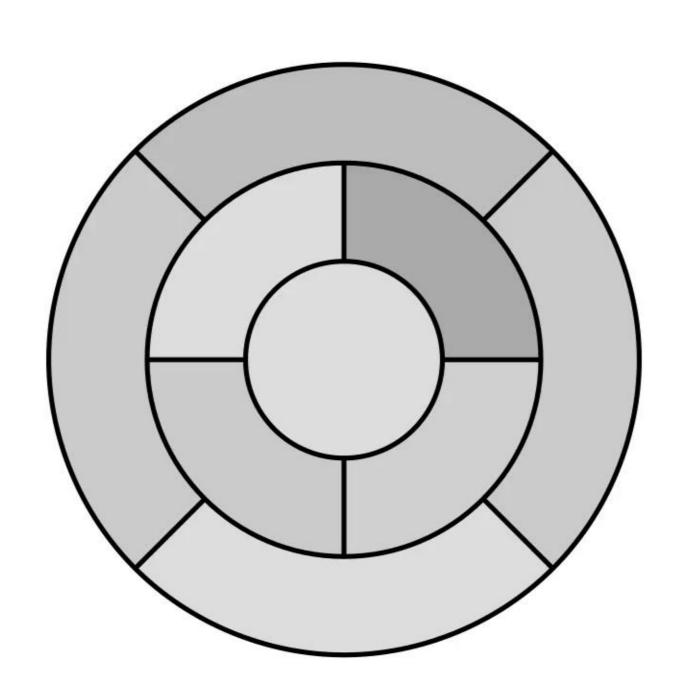




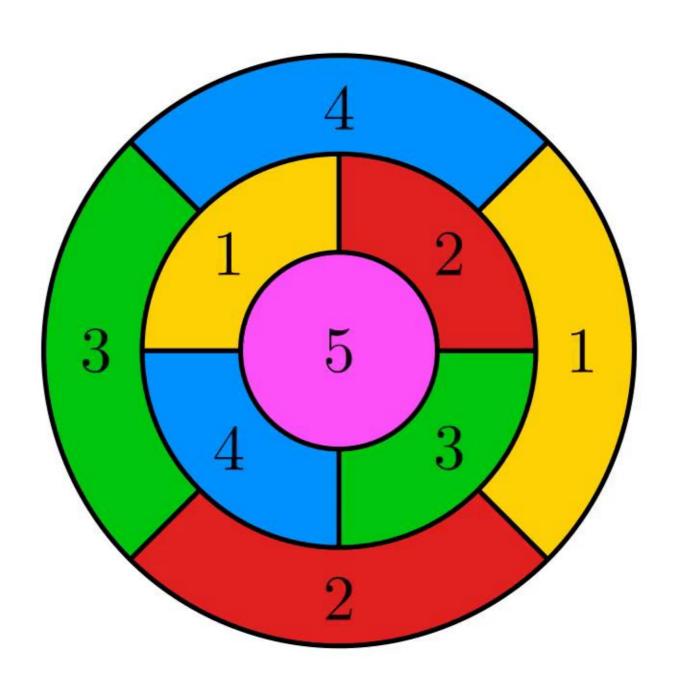
Compatibilités



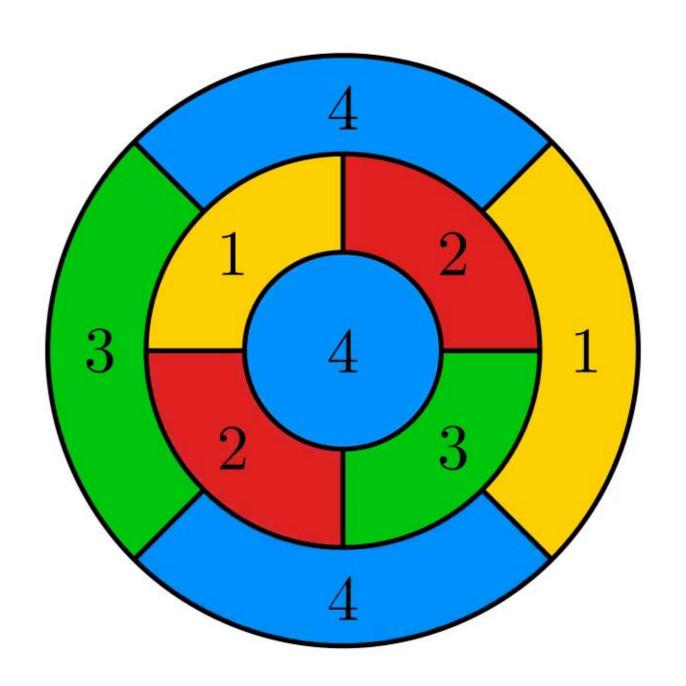
Quel est le nombre minimum de couleurs nécessaires pour colorier cette image tel que deux régions adjacentes n'ont pas la même couleur ?



Quel est le nombre minimum de couleurs nécessaires pour colorier cette image tel que deux régions adjacentes n'ont pas la même couleur?



Quel est le nombre minimum de couleurs nécessaires pour colorier cette image tel que deux régions adjacentes n'ont pas la même couleur?



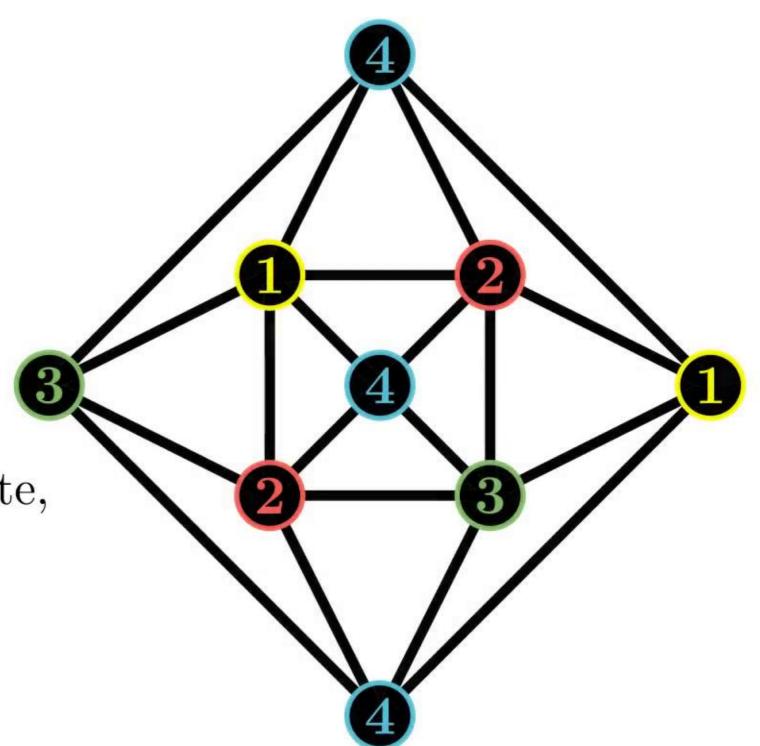
Coloration d'un graphe G = (S, A)

Coloration d'un graphe G = (S, A)

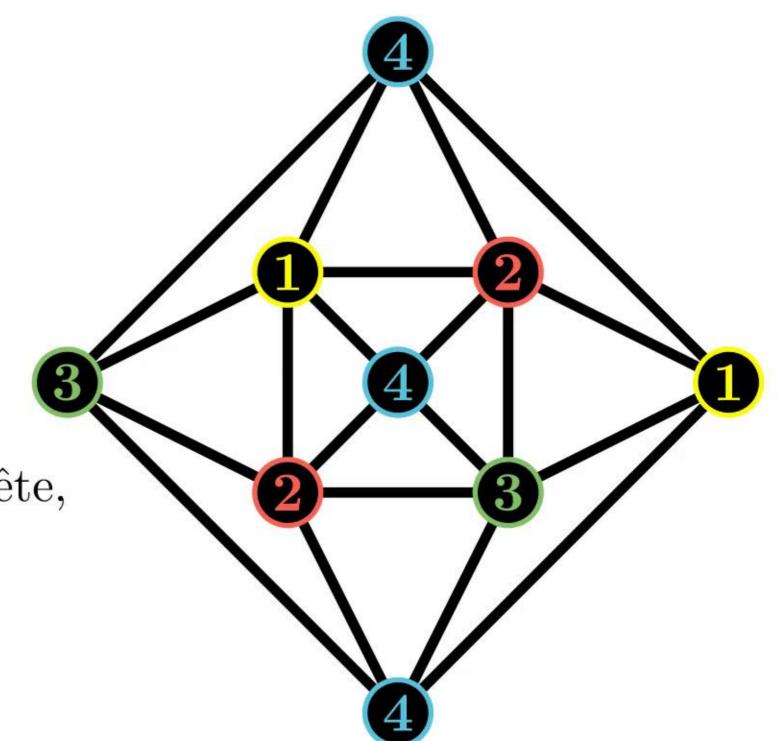
Chaque sommet a une couleur (représentée par un nombre).

Coloration d'un graphe G = (S, A)

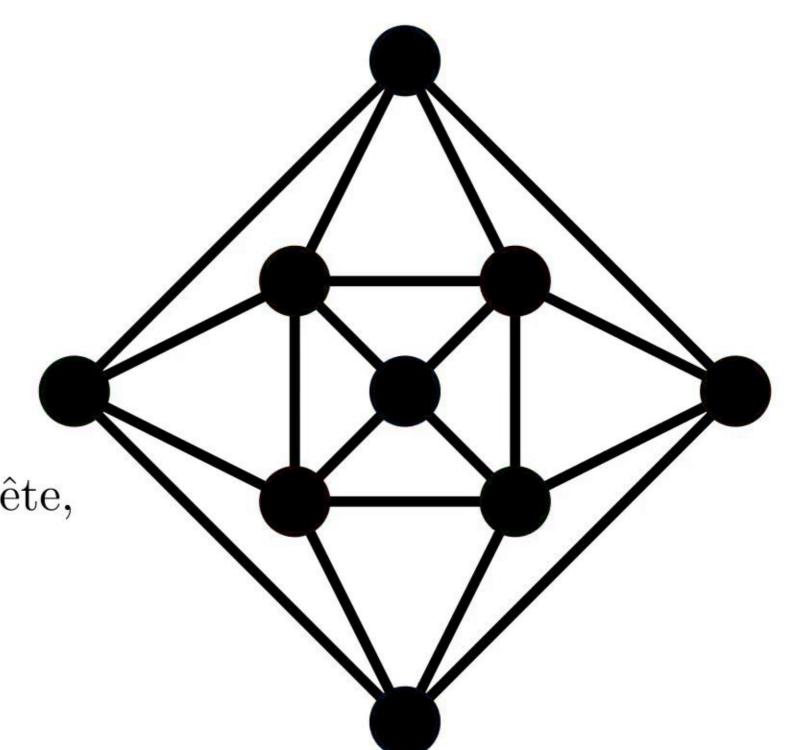
Chaque sommet a une couleur (représentée par un nombre).



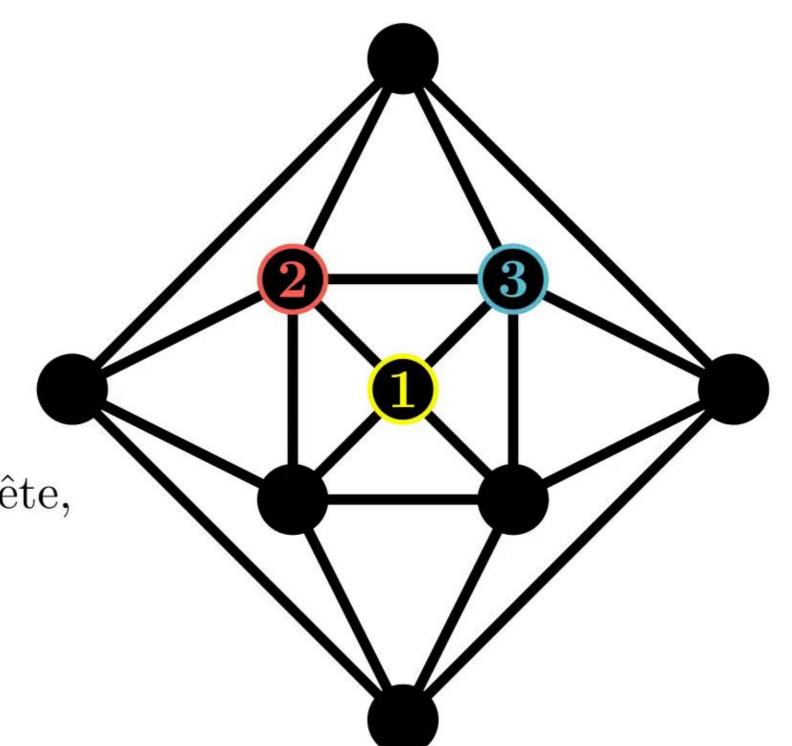
Chaque sommet a une couleur (représentée par un nombre).



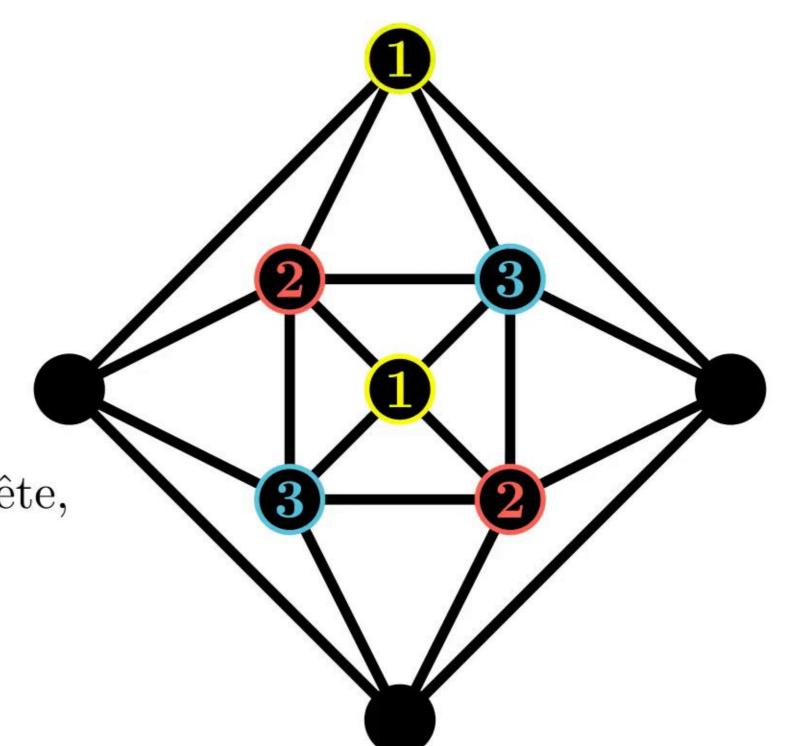
Chaque sommet a une couleur (représentée par un nombre).



Chaque sommet a une couleur (représentée par un nombre).



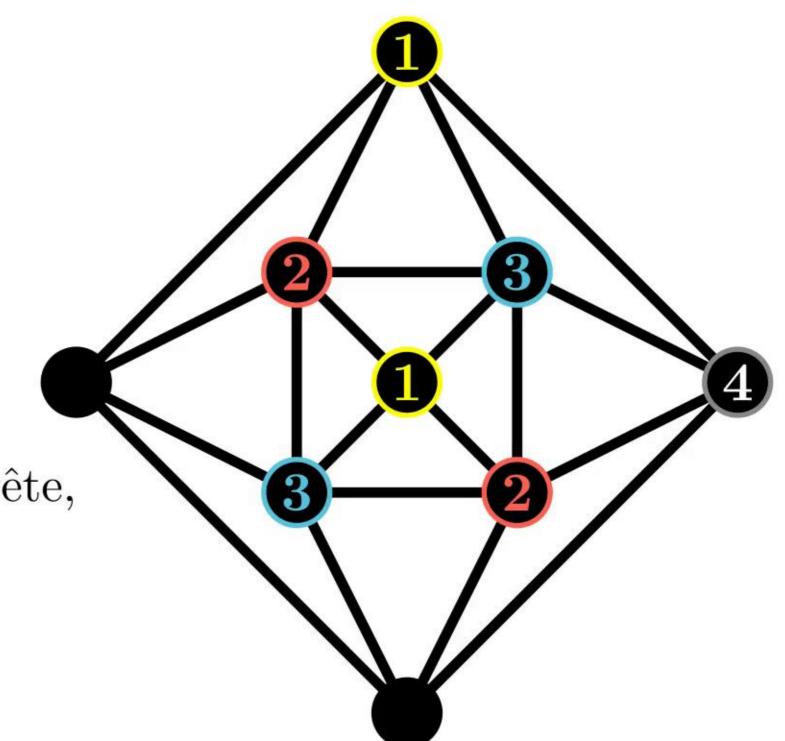
Chaque sommet a une couleur (représentée par un nombre).



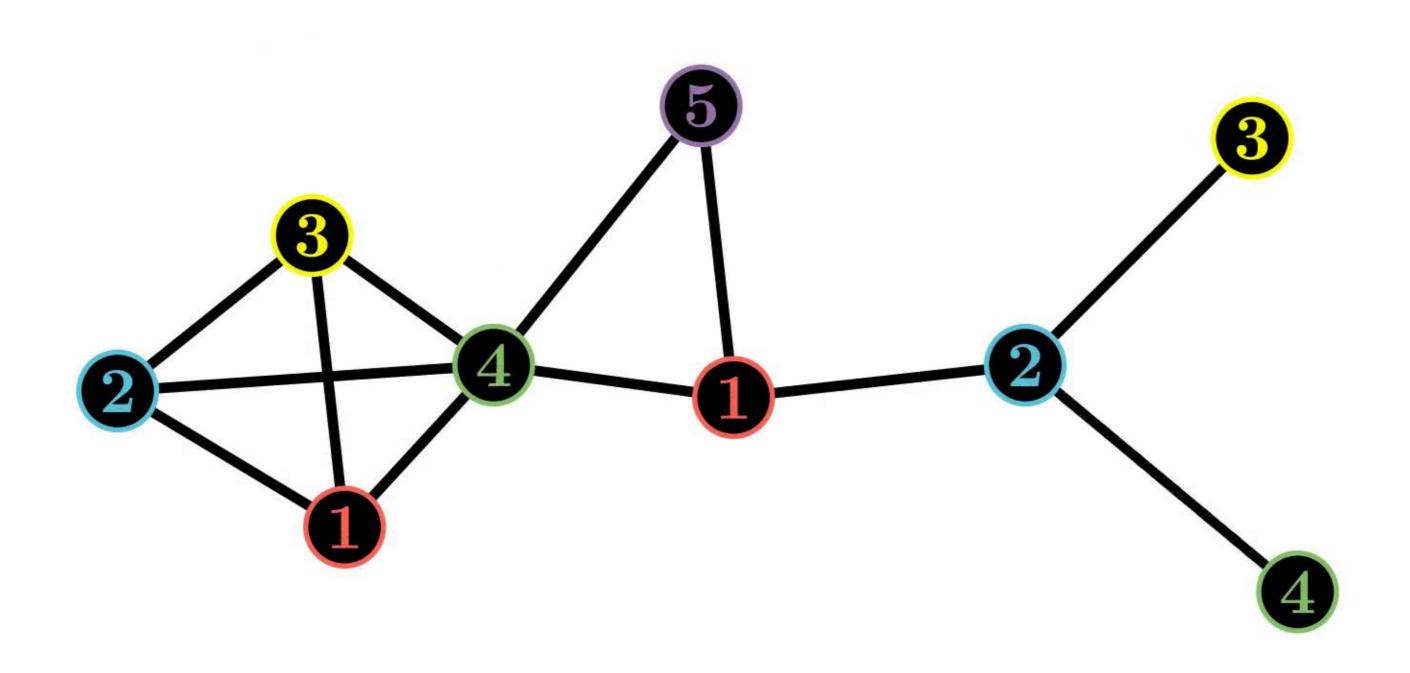
On ne peut pas colorier ce graphe avec 3 couleurs.

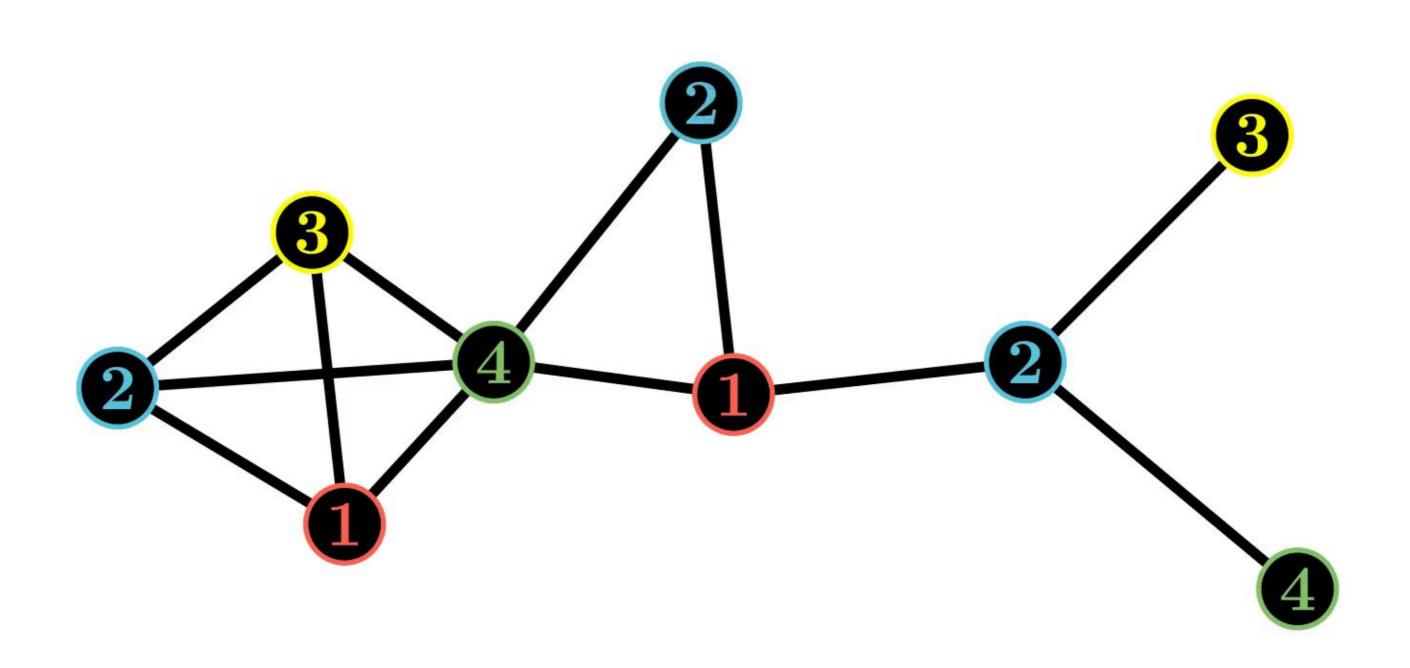
Chaque sommet a une couleur (représentée par un nombre).

Si deux sommets sont reliés par une arête, ils ont une couleur différente.



Quels autres problèmes peut-on modéliser comme minimisation du nombre de groupes compatibles?





En général, on ne sait pas résoudre ce problème rapidement.

Tous ces cours ont lieu dans le même bâtiment. Combien de salles faut-il, au minimum, pour organiser cet emploi du temps?

Cours	Classe	Heures	Id
Mathématiques	2 GT3	08h00 - 09h00	A
Physique	1 G1	09h00 - 10h00	В
SVT	1 G3	13h00 - 15h00	C
NSI	T G3	11h00 - 12h00	D
Spé math	T G5	08h00 - 09h30	Е
Physique	T G1	09h30 - 11h30	F
Secret meeting	???	12h30 - 14h00	G
Spé physique	T G2	08h00 - 10h00	Н
SVT	2 GT1	11h00 - 12h00	I
Mathématiques	1 T2	13h00 - 15h00	J
Mathématiques	1 G5	10h00 - 12h00	К

Tous ces cours ont lieu dans le même bâtiment. Combien de salles faut-il, au minimum, pour organiser cet emploi du temps?

• Sommets : Cours

Cours	Classe	Heures	Id
Mathématiques	2 GT3	08h00 - 09h00	A
Physique	1 G1	09h00 - 10h00	В
SVT	1 G3	13h00 - 15h00	C
NSI	T G3	11h00 - 12h00	D
Spé math	T G5	08h00 - 09h30	Е
Physique	T G1	09h30 - 11h30	F
Secret meeting	???	12h30 - 14h00	G
Spé physique	T G2	08h00 - 10h00	Н
SVT	2 GT1	11h00 - 12h00	I
Mathématiques	1 T2	13h00 - 15h00	J
Mathématiques	1 G5	10h00 - 12h00	К

Tous ces cours ont lieu dans le même bâtiment. Combien de salles faut-il, au minimum, pour organiser cet emploi du temps?

• Sommets : Cours

• Arête (u, v): Cours u et v intersectent

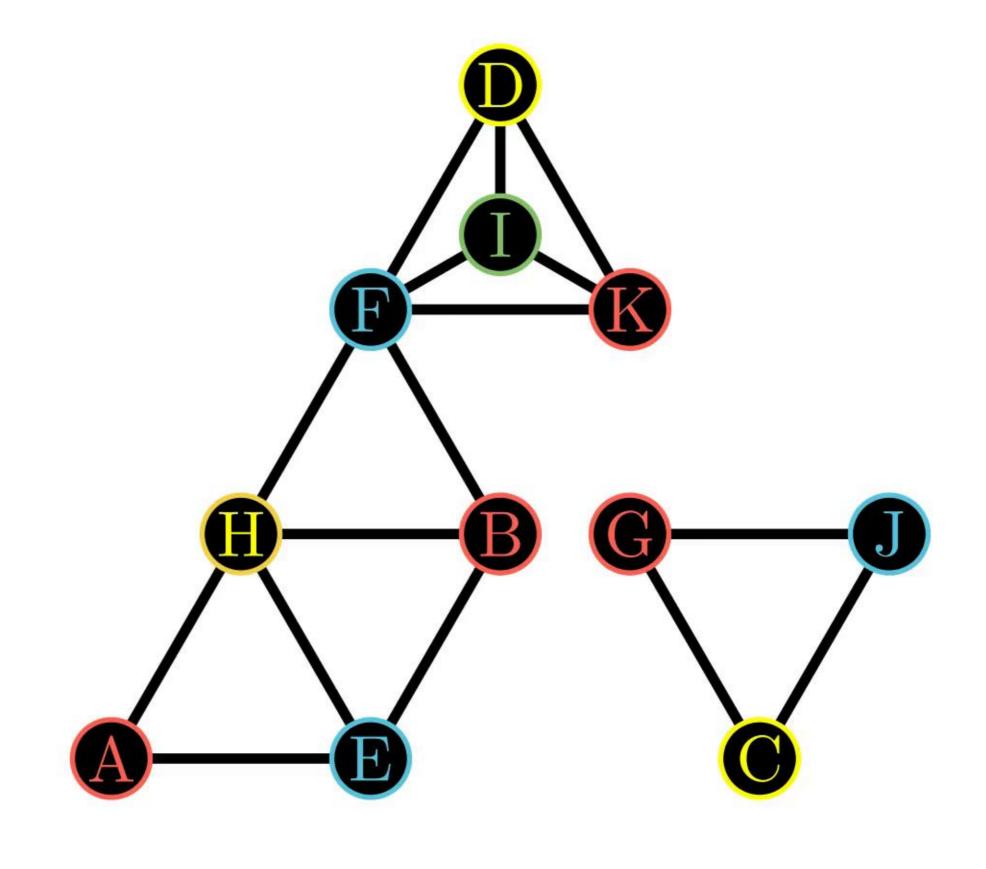
Cours	Classe	Heures	Id
Mathématiques	2 GT3	08h00 - 09h00	A
Physique	1 G1	09h00 - 10h00	В
SVT	1 G3	13h00 - 15h00	С
NSI	T G3	11h00 - 12h00	D
Spé math	T G5	08h00 - 09h30	Е
Physique	T G1	09h30 - 11h30	F
Secret meeting	???	12h30 - 14h00	G
Spé physique	T G2	08h00 - 10h00	Н
SVT	2 GT1	11h00 - 12h00	I
Mathématiques	1 T2	13h00 - 15h00	J
Mathématiques	1 G5	10h00 - 12h00	К

Heures	Id
08h00 - 09h00	A
09h00 - 10h00	В
13h00 - 15h00	С
11h00 - 12h00	D
08h00 - 09h30	E
09h30 - 11h30	F
12h30 - 14h00	G
08h00 - 10h00	Н
11h00 - 12h00	I
13h00 - 15h00	J
10h00 - 12h00	K

Heures	Id	Salle
08h00 - 09h00	A	?
08h00 - 09h30	E	?
08h00 - 10h00	Н	?
09h00 - 10h00	В	?
09h30 - 11h30	F	?
10h00 - 12h00	K	?
11h00 - 12h00	D	?
11h00 - 12h00	I	?
12h30 - 14h00	G	?
13h00 - 15h00	С	?
13h00 - 15h00	J	?

Heures	Id	Salle
08h00 - 09h00	A	?
08h00 - 09h30	E	?
08h00 - 10h00	Н	?
09h00 - 10h00	В	?
09h30 - 11h30	F	?
10h00 - 12h00	K	?
11h00 - 12h00	D	?
11h00 - 12h00	I	?
12h30 - 14h00	G	?
13h00 - 15h00	C	?
13h00 - 15h00	J	?

Heures	Id	Salle
08h00 - 09h00	A	1
08h00 - 09h30	E	2
08h00 - 10h00	Н	3
09h00 - 10h00	В	1
09h30 - 11h30	F	2
10h00 - 12h00	K	1
11h00 - 12h00	D	3
11h00 - 12h00	I	4
12h30 - 14h00	G	1
13h00 - 15h00	C	2
13h00 - 15h00	J	3



Assignation de voies à des trains SNCF

TGV 1, Compatible voies A, E

TGV 2, Compatible voies A, B

TER 3, Compatible voies C, D, E

Intercité 4, Compatible voies A

Intercité 5, Compatible voies A, B

Assignation de voies à des trains SNCF

TGV 1, Compatible voies A, E \implies Voie A

TGV 2, Compatible voies A, B \implies Voie B

TER 3, Compatible voies C, D, E \implies Voie C

Intercité 4, Compatible voies A

Intercité 5, Compatible voies A, B

Assignation de voies à des trains SNCF

TGV 1, Compatible voies A, E \implies Voie A

TGV 2, Compatible voies A, B \implies Voie B

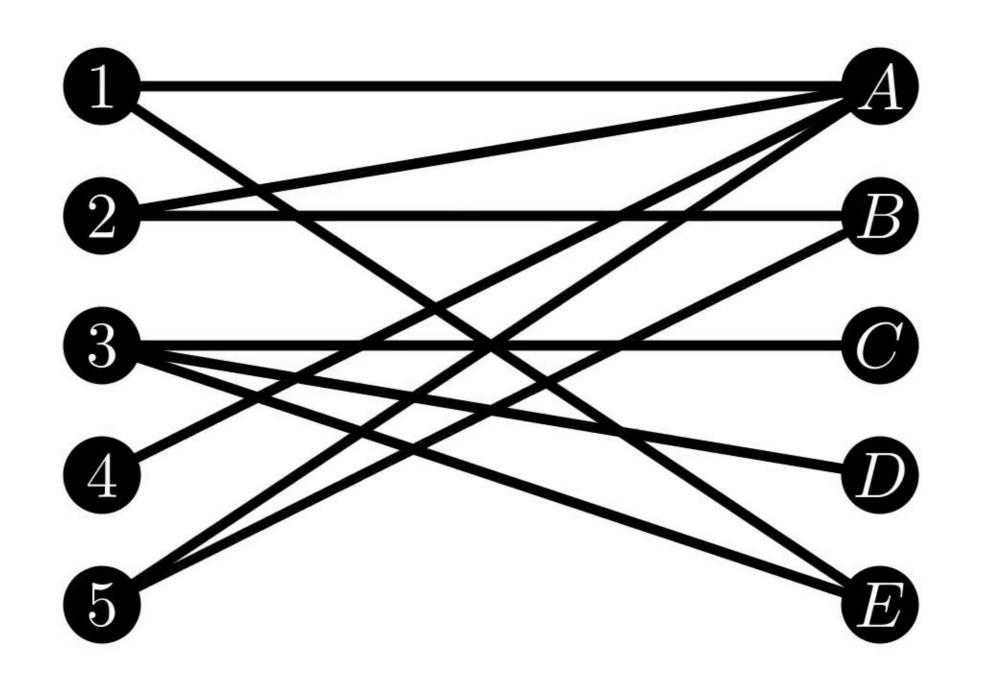
TER 3, Compatible voies C, D, E \implies Voie C

Intercité 4, Compatible voies A

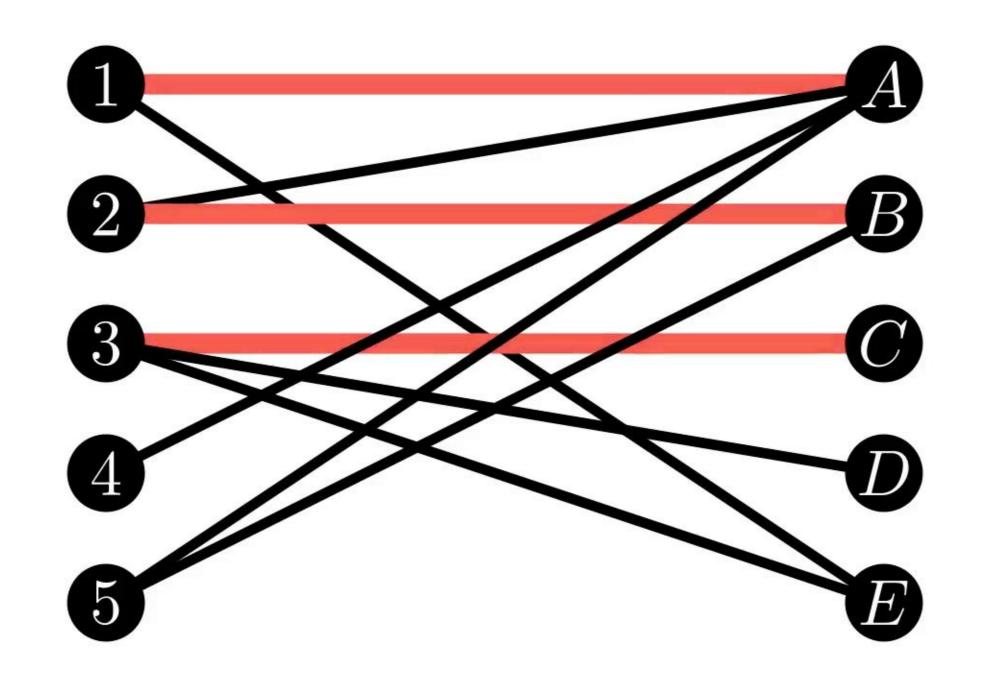
Intercité 5, Compatible voies A, B

Combien de trains peut-on assigner au maximum?

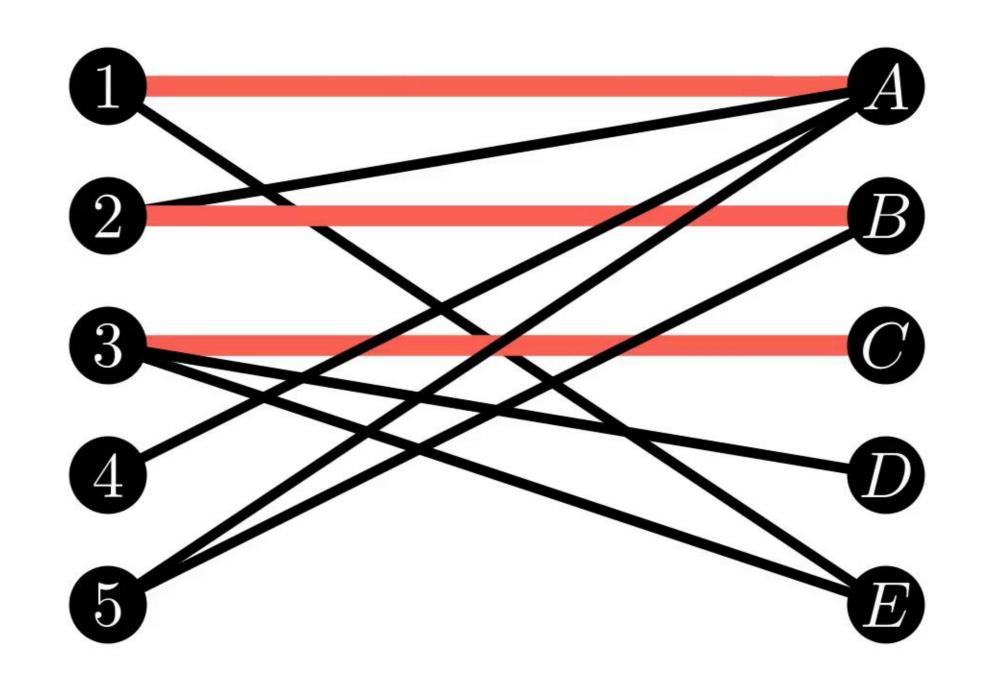
Graphe biparti $G = (S_A, S_B, A)$

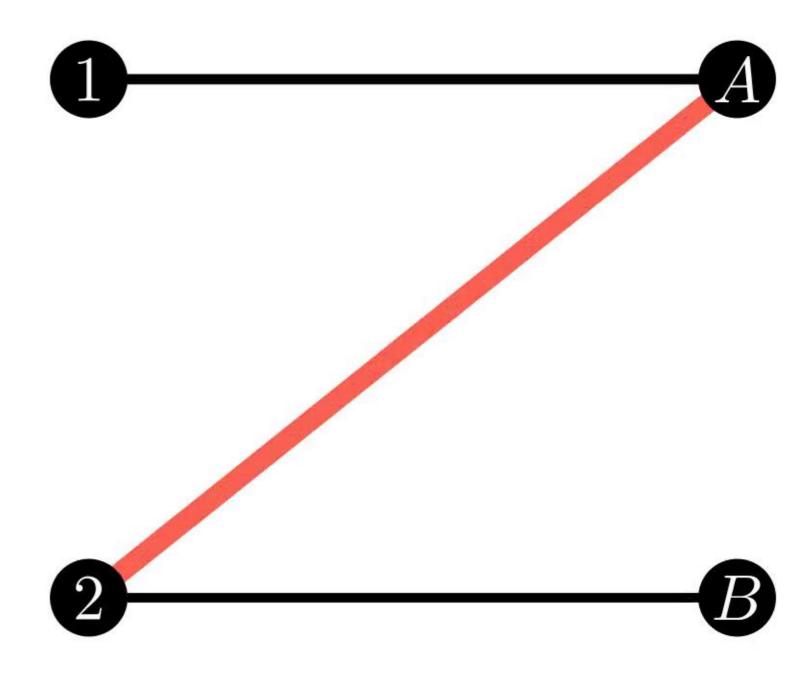


Couplage C de G

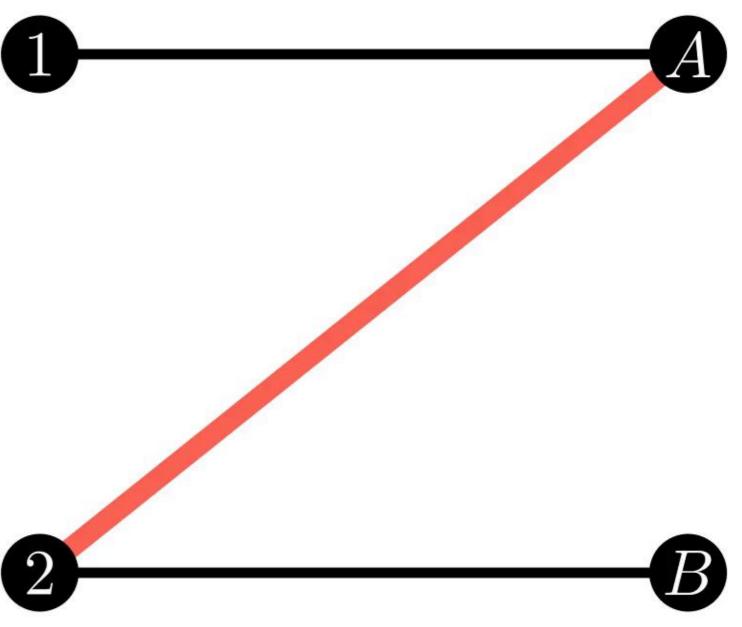


Peut-on faire mieux que 3 arêtes?

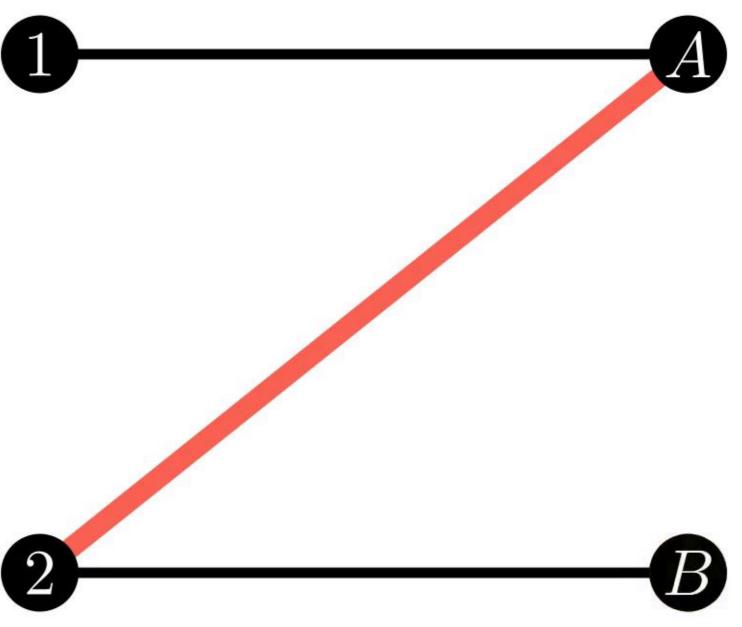




- Commence sur un sommet de S_A pas dans le couplage,
- Alterne entre arêtes noires (non-couple) et rouge (couple),
- Termine sur un sommet de S_B pas dans le couplage.



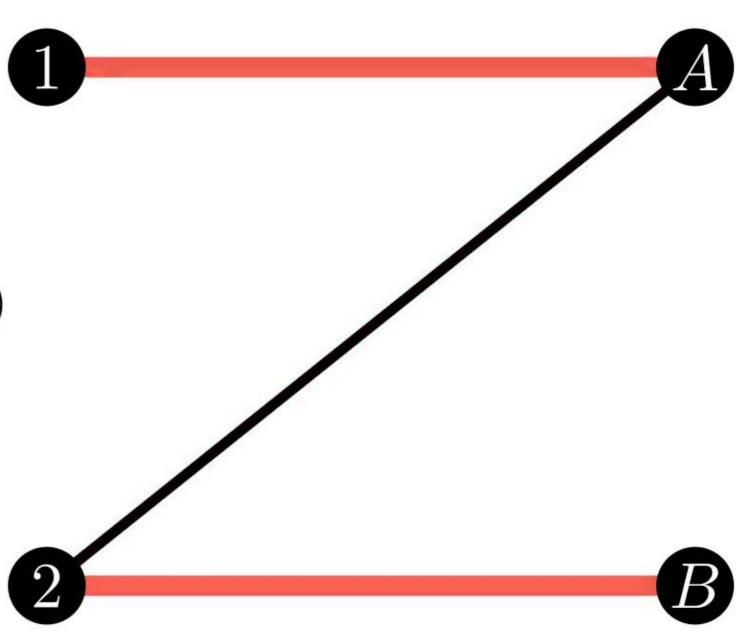
- Commence sur un sommet de S_A pas dans le couplage,
- Alterne entre arêtes noires (non-couple) et rouge (couple),
- Termine sur un sommet de S_B pas dans le couplage.



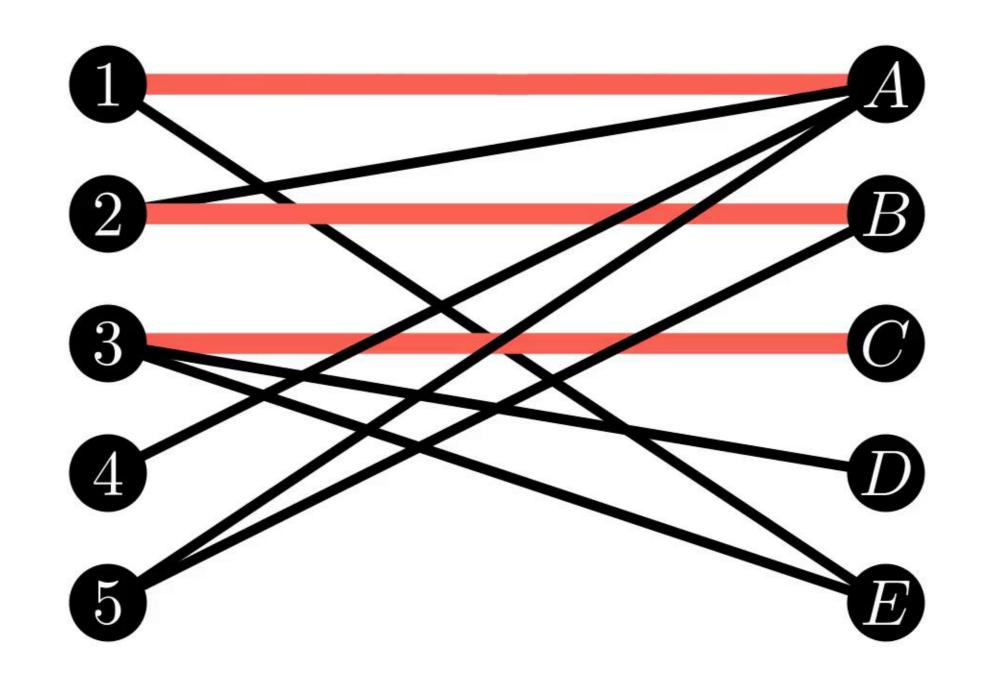
• Commence sur un sommet de S_A pas dans le couplage,

• Alterne entre arêtes noires (non-couple) et rouge (couple),

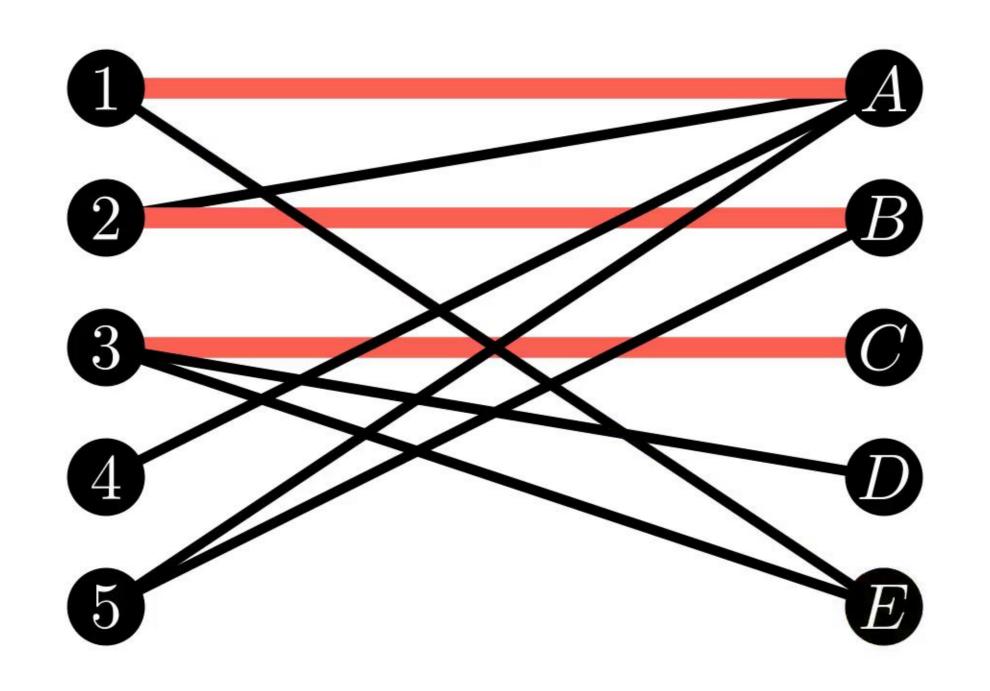
• Termine sur un sommet de S_B pas dans le couplage.



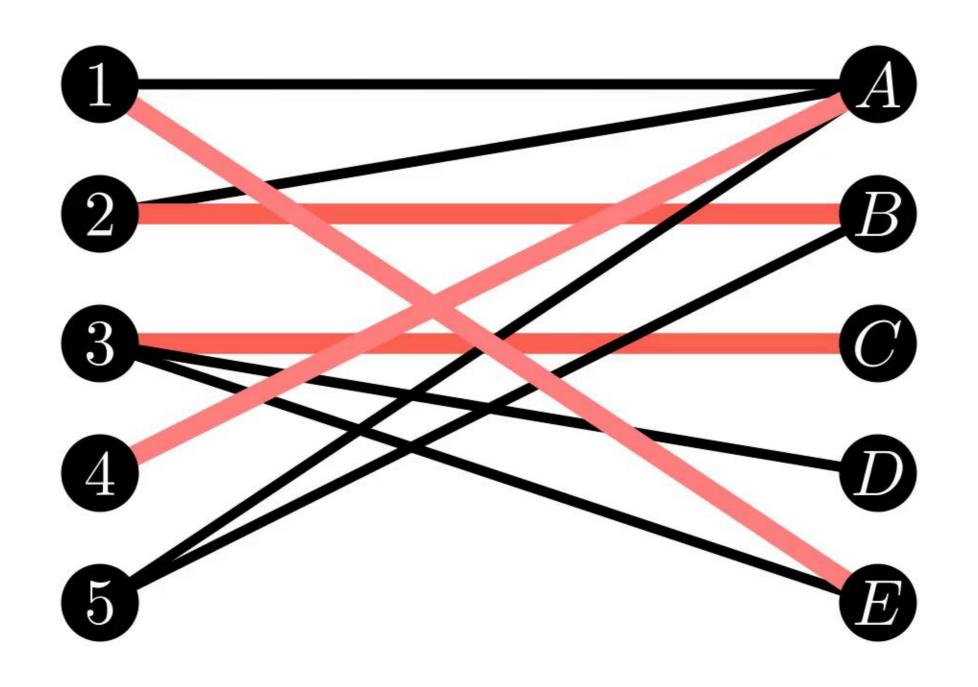
Peut-on faire mieux que 3 arêtes?



Peut-on faire mieux que 3 arêtes?



Oui, on peut avoir 4 arêtes.



Antoine

Préfère: Émilie > Flora > Gaëlle

Benoit

Préfère: \mathbf{F} lora $> \mathbf{G}$ aëlle $> \mathbf{\acute{E}}$ milie

Clément

Préfère: Émilie > Gaëlle > Flora

Émilie

Préfère: Clément > Antoine > Benoit

Flora

Préfère: Benoit > Antoine > Clément

Gaëlle

Préfère: Clément > Antoine > Benoit

On souhaite marier tout le monde. Comment former les couples?

Antoine

Préfère: Émilie > Flora > Gaëlle

Benoit

Préfère: \mathbf{F} lora $> \mathbf{G}$ aëlle $> \mathbf{\acute{E}}$ milie

Clément

Préfère: Émilie > Gaëlle > Flora

Émilie

Préfère: Clément > Antoine > Benoit

Flora

Préfère: Benoit > Antoine > Clément

Gaëlle

Préfère: Clément > Antoine > Benoit

Intuitivement, les hommes marient à tour de rôle la femme qu'il préfère.

Antoine

Préfère: Émilie > Flora > Gaëlle

Benoit

Préfère: \mathbf{F} lora $> \mathbf{G}$ aëlle $> \mathbf{\acute{E}}$ milie

Clément

Préfère: Émilie > Gaëlle > Flora

Émilie

Préfère: Clément > Antoine > Benoit

Flora

Préfère: Benoit > Antoine > Clément

Gaëlle

Préfère: Clément > Antoine > Benoit

Intuitivement, les hommes marient à tour de rôle la femme qu'il préfère.

Antoine

Préfère: Émilie > Flora > Gaëlle

Benoit

Préfère: $\mathbf{Flora} > \mathbf{G}$ aëlle $> \mathbf{\acute{E}}$ milie

Clément

Préfère: Émilie > Gaëlle > Flora

Émilie

Préfère: Clément > Antoine > Benoit

Flora

Préfère: Benoit > Antoine > Clément

Gaëlle

Préfère: Clément > Antoine > Benoit

Et là, c'est le drame. Clément et Émilie entâment une liaison dangereuse...

Antoine

Préfère: Émilie > Flora > Gaëlle

Benoit

Préfère: Flora > Gaëlle > Émilie

Clément

Préfère: Émilie > Gaëlle > Flora

Émilie

Préfère: Clément > Antoine > Benoit

Flora

Préfère: Benoit > Antoine > Clément

Gaëlle

Préfère: Clément > Antoine > Benoit

Et là, c'est le drame.

Clément et Émilie entâment une liaison dangereuse...

On souhaite organiser des relations stables.

Antoine

Préfère: Émilie > Flora > Gaëlle

Benoit

Préfère: Flora > Gaëlle > Émilie

Clément

Préfère: Émilie > Gaëlle > Flora

Émilie

Préfère: Clément > Antoine > Benoit

Flora

Préfère: Benoit > Antoine > Clément

Gaëlle

Préfère: Clément > Antoine > Benoit

Couplage instable

F est en couple avec g

F préfère G à g

G est en couple avec f

G préfère F à f

Antoine

Préfère: Émilie > Flora > Gaëlle

Benoit

Préfère: Flora > Gaëlle > Émilie

Clément

Préfère: Émilie > Gaëlle > Flora

Émilie

Préfère: Clément > Antoine > Benoit

Flora

Préfère: Benoit > Antoine > Clément

Gaëlle

Préfère: Clément > Antoine > Benoit

$$\mathbf{E}$$
 B > C > A

$$\mathbf{F} \subset A > B$$

$$\mathbf{G}$$
 A > C > B

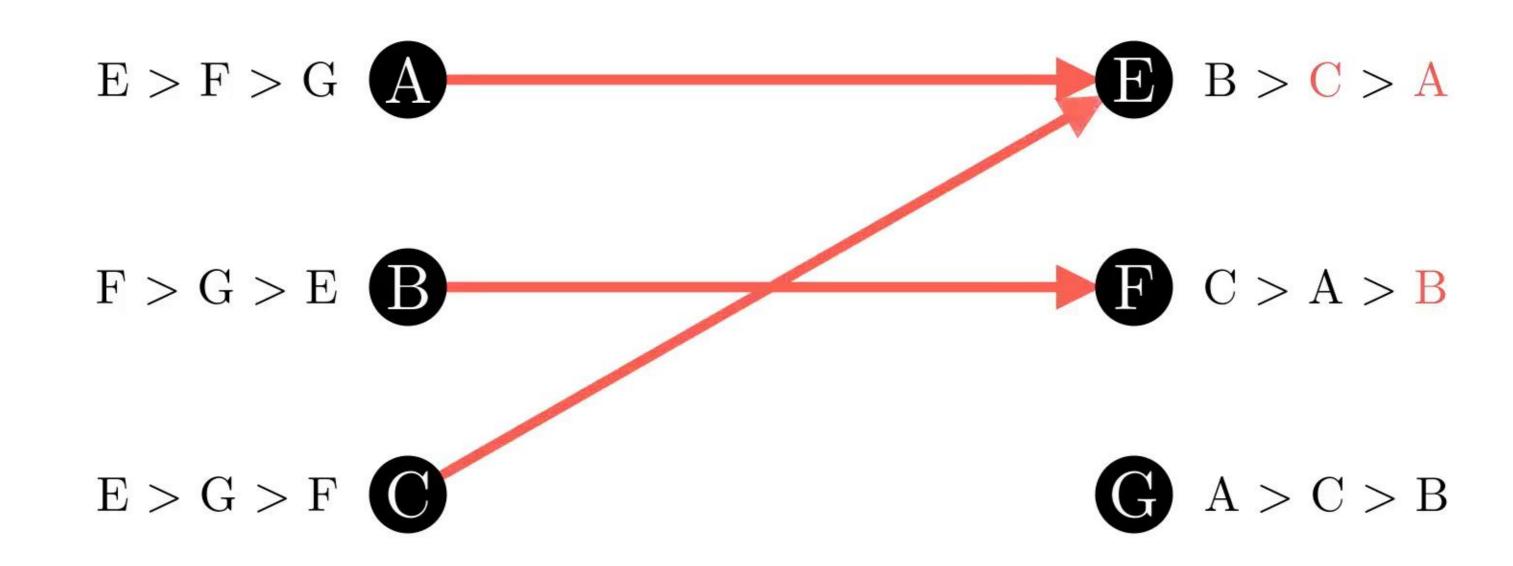
Chaque homme célibataire propose à la femme qu'il préfère parmis celles qui ne l'ont pas encore refusé.

$$\mathbf{E}$$
 B > C > A

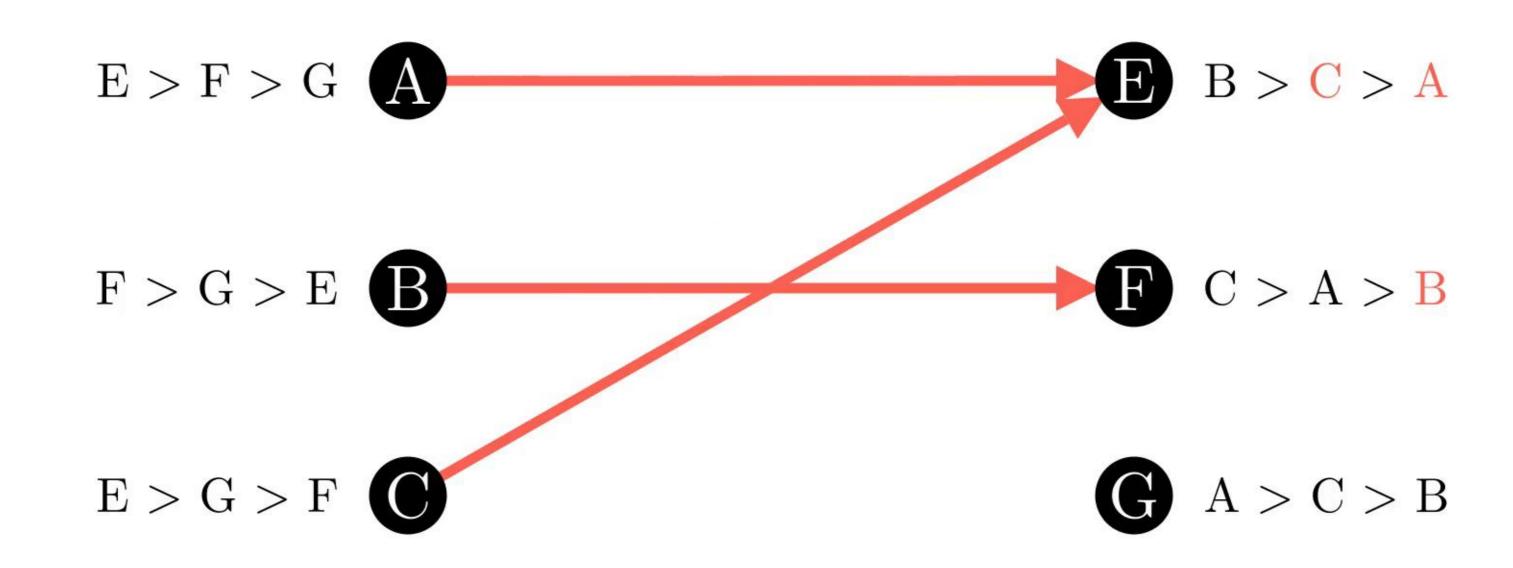
$$\mathbf{F}$$
 $C > A > B$

$$\mathbf{G}$$
 A > C > B

Chaque homme célibataire propose à la femme qu'il préfère parmis celles qui ne l'ont pas encore refusé.



Chaque femme se met en couple avec l'homme préféré parmis ceux qui ont proposé.



Chaque femme se met en couple avec l'homme préféré parmis ceux qui ont proposé.

On répète tant qu'il reste au moins un homme célibataire.

$$\mathbf{E}$$
 B > \mathbf{C} > A

$$\mathbf{F}$$
 $C > A > B$

$$\mathbf{G}$$
 A > C > B

$$\mathbf{E}$$
 B > C > A

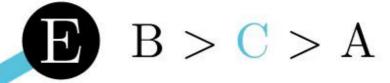
$$\mathbf{F}$$
 $C > A > B$

$$\mathbf{G}$$
 A > C > B



$$\mathbf{F}$$
 $C > A > B$

$$\bullet$$
 A > C > B



$$\mathbf{F}$$
 $C > A > B$

$$\mathbf{G}$$
 A > C > B

Cet algorithme donne un couplage homme-optimal, femme-minimal.

$$\mathbf{F}$$
 $C > A > B$

$$\mathbf{G}$$
 A > C > B

Quelques problèmes modélisés par des graphes

Quelques problèmes modélisés par des graphes

Incompatibilité (Coloration)

- Achat des fréquences radio
- Salles dans un emploi du temps

Quelques problèmes modélisés par des graphes

Incompatibilité (Coloration)

- Achat des fréquences radio
- Salles dans un emploi du temps

Compatibilité (Couplages)

- Trains vers voies de gare
- Couplages stables (Parcoursup)

Quelques problèmes modélisés par des graphes

Incompatibilité (Coloration)

- Achat des fréquences radio
- Salles dans un emploi du temps

Compatibilité (Couplages)

- Trains vers voies de gare
- Couplages stables (Parcoursup)

Merci!