

Directed hypergraph connectivity augmentation by hyperarc reorientation

Joint work with: Moritz Mühlenthaler and Zoltán Szigeti

Benjamin Peyrille

November 23th 2023

Edge connectivity

A graph G = (V, E) is k-edge-connected if and only if for all non-empty vertex set $X \neq V$: $d(X) \geq k$.

Edge connectivity

A graph G = (V, E) is k-edge-connected if and only if for all non-empty vertex set $X \neq V$: $d(X) \geq k$.

This graph is 2-edge-connected.

Arc connectivity

A graph orientation $\vec{G} = (V, A)$ is k-arc-connected if and only if for all non-empty vertex set $X \neq V$: $d^-(X) \geq k$.

Arc connectivity

A graph orientation $\vec{G} = (V, A)$ is k-arc-connected if and only if for all non-empty vertex set $X \neq V$: $d^-(X) \geq k$.

This orientation is 0-arc-connected.

Augmentation results

Weak Orientation Theorem (Nash-Williams, 1960)

An undirected graph admits a k-arc-connected orientation if and only if it is 2k-edge-connected.

Augmentation results

Weak Orientation Theorem (Nash-Williams, 1960)

An undirected graph admits a k-arc-connected orientation if and only if it is 2k-edge-connected.

Arc-Connectivity Augmentation (Ito et al., 2021)

Let G = (V, E) be an undirected (2k + 2)-edge-connected graph, D be a k-arc-connected orientation of G.

Then, there exist orientations $D_1, D_2, \ldots, D_{\ell}$ of G such that

- \triangleright D_i is obtained from D_{i-1} by reversing an arc of D_{i-1} ,
- $\blacktriangleright \ell < |V|^3$
- $\lambda(D) < \lambda(D_1) \le \lambda(D_2) \le \ldots \le \lambda(D_\ell) = k+1.$

Furthermore, such orientations can be found in polynomial time.

The key idea of Ito et al.

Reversing an (s, t)-path only changes the connectivity of vertex sets separating s and t.

The key idea of Ito et al.

Reversing an (s, t)-path only changes the connectivity of vertex sets separating s and t.

We will iteratively reverse (s, t)-paths connecting a minimal set S of in-degree k (in-tight T^-) to a minimal set T of out-degree k (out-tight T^+).

We call s a **source** and t a **sink**.

The dangers

Connectivity loss by path-reversal.

The dangers

Connectivity loss by Connectivity loss by path-reversal. arc-reversal.

The dangers

Connectivity loss by Connectivity loss by path-reversal. arc-reversal.

How to preserve connectivity: path errors

We introduce a new family \mathcal{R}^- containing the minimum in-tight sets containing an out-tight set.

How to preserve connectivity: path errors

We introduce a new family \mathcal{R}^- containing the minimum in-tight sets containing an out-tight set.

Restraining our paths to R prevents path-reversal connectivity loss. Thus, we search for s and t in R.

How to preserve connectivity: arc errors

We reverse our (s, t)-path from end to start.

For any vertex set X entered that doesn't contain t, $d^+(X)$ is temporarily decreased by 1.

How to preserve connectivity: arc errors

We reverse our (s, t)-path from end to start.

For any vertex set X entered that doesn't contain t, $d^+(X)$ is temporarily decreased by 1.

Our (s, t)-path must not enter any out-tight set that doesn't contain t.

How to do something: safe sources

A vertex s is a safe source for $S \in \mathcal{M}^-$ if:

- ▶ (Safe) If $s \in Y \in \mathcal{T}^+$ then $S \subset Y$.
- ▶ (Useful) If $s \in Z$ such that $d^+(Z) = k + 1$ and $S \nsubseteq Z$ then there exists an out-tight set in Z that doesn't contain s.

Algorithm

- ▶ Pick a set $R \in \mathbb{R}^-$ (If none, flip orientation).
- ▶ Pick a safe source s in a minimal set $S \in T^-$ with $S \subseteq R$.
- ► Search for a minimum out-tight set *T* in *R*.

 If the search enters an out-tight set, don't exit it.
- ▶ Once the search gets inside a minimum out-tight set T, find a safe sink t in T.
- \triangleright Reverse the search (s, t)-path!

Because of the search rule, the path never leaves any out-tight set.

Repeat until no tight sets remain $\implies \lambda(D) = k + 1$.

Hypergraphs

Hypergraph

A hypergraph $\mathcal{H} = (V, \mathcal{E})$ is composed of:

- ► Vertices in *V*
- ightharpoonup Hyperedges in \mathcal{E} , linking vertices together

Hypergraphs

Hypergraph

A hypergraph $\mathcal{H} = (V, \mathcal{E})$ is composed of:

- ► Vertices in V
- \blacktriangleright Hyperedges in \mathcal{E} , linking vertices together

Partition-connectivity

 \mathcal{H} is (k,k)-partition-connected if for any partition \mathcal{P} of V, at least $k|\mathcal{P}|$ hyperedges intersect at least 2 members of \mathcal{P} : $e_{\mathcal{H}}(\mathcal{P}) \geq k|\mathcal{P}|$.

Partition-connectivity is a stronger version of edge-connectivity.

Directed Hypergraphs

Directed Hypergraph

A directed hypergraph $\vec{\mathcal{H}} = (V, \mathcal{A})$ is composed of:

- ► Vertices in *V*
- ightharpoonup Hyperarcs in \mathcal{A} with a unique head vertex

Directed Hypergraphs

Directed Hypergraph

A directed hypergraph $\vec{\mathcal{H}} = (V, \mathcal{A})$ is composed of:

- ► Vertices in *V*
- ightharpoonup Hyperarcs in $\mathcal A$ with a unique head vertex

Hyperarc-connectivity

 $\vec{\mathcal{H}}$ is k-hyperarc-connected if for any non-empty vertex set $X \neq V$, at least k hyperarcs enter X.

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Theorem on hypergraph orientations (Frank, Király, Király, 2003)

A hypergraph \mathcal{H} admits a k-hyperarc-connected orientation if and only if it is (k, k)-partition-connected.

Our result

Hyperarc-Connectivity Augmentation

Let $\mathcal{H} = (V, E)$ be a (k+1, k+1)-partition-connected hypergraph and \mathcal{D} be a k-hyperarc-connected orientation of \mathcal{H} .

Then, there exist orientations $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_{\ell}$ of \mathcal{H} such that

- $\triangleright \mathcal{D}_i$ is obtained from \mathcal{D}_{i-1} by reorienting a hyperarc of \mathcal{D}_{i-1} ,
- \triangleright $\ell < |V|^3$
- \blacktriangleright $\lambda(\mathcal{D}) < \lambda(\mathcal{D}_1) < \lambda(\mathcal{D}_2) < \ldots < \lambda(\mathcal{D}_{\ell}) = k+1.$

Furthermore, such orientations can be found in polynomial time.

Our result

Hyperarc-Connectivity Augmentation

Let $\mathcal{H} = (V, E)$ be a (k+1, k+1)-partition-connected hypergraph and \mathcal{D} be a k-hyperarc-connected orientation of \mathcal{H} .

Then, there exist orientations $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_{\ell}$ of \mathcal{H} such that

- \triangleright \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting a hyperarc of \mathcal{D}_{i-1} ,
- \triangleright $\ell < |V|^3$
- \blacktriangleright $\lambda(\mathcal{D}) < \lambda(\mathcal{D}_1) < \lambda(\mathcal{D}_2) < \ldots < \lambda(\mathcal{D}_{\ell}) = k+1.$

Furthermore, such orientations can be found in polynomial time.

This is the first algorithm to compute a k-hyperarc-connected orientation of a hypergraph.

Frank's result : path and cycle reversing

Reconfiguration of two k-arc-connected orientations (1982)

Given two k-arc-connected orientations D, D' of a 2k-edge-connected graph G, there exist k-arc-connected orientations $D = D_1, D_2, \cdots, D_\ell = D'$ of G such that D_i is obtained from D_{i-1} by reversing a path or a cycle.

Applying this theorem arc-by-arc may decrease the connectivity by one temporarily.

Ito et al.'s result on reconfiguration

Reconfiguration reachability of k-arc-connected orientations

Given two k-arc-connected orientations D, D' of a (2k+2)-edge-connected graph G, there exist k-arc-connected orientations $D = D_1, D_2, \dots, D_{\ell} = D'$ of G such that D_i is obtained from D_{i-1} by reversing an arc of D_{i-1} . Furthermore, such orientations can be found in polynomial time.

Ito et al.'s result on reconfiguration

Reconfiguration reachability of k-arc-connected orientations

Given two k-arc-connected orientations D, D' of a (2k+2)-edge-connected graph G, there exist k-arc-connected orientations $D = D_1, D_2, \dots, D_{\ell} = D'$ of G such that D_i is obtained from D_{i-1} by reversing an arc of D_{i-1} . Furthermore, such orientations can be found in polynomial time.

We augment D and D' to (k+1)-arc-connectivity, then we apply Frank's reconfiguration algorithm arc-by-arc.

It works on hypergraphs

We can adapt the proof of Frank to work on hypergraph orientations, leading to the following generalization.

Reconfiguration reachability of k-hyper-connected orientations

Given two k-hyperarc-connected orientations $\mathcal{D}, \mathcal{D}'$ of a (k+1,k+1)-partition-connected hypergraph \mathcal{H} , there exist k-hyperarc-connected orientations $\mathcal{D}=\mathcal{D}_1,\mathcal{D}_2,\cdots,\mathcal{D}_\ell=\mathcal{D}'$ of \mathcal{H} such that \mathcal{D}_i is obtained from \mathcal{D}_{i-1} by reorienting an hyperarc of \mathcal{D}_{i-1} .

Furthermore, such orientations can be found in polynomial time.

Reconfiguration

Conclusion

We generalized the results of Ito et al. to hypergraphs:

- ► We provided the first combinatorial algorithm for computing a *k*-hyperarc-connected orientation of a hypergraph.
- ▶ We show it is possible to reconfigure a k-hyperarc-connected orientation of a hypergraph into any other, if the hypergraph is (k+1, k+1)-partition-connected.

Open questions:

- ▶ Our upper bound on the number of reorientated hyperarcs is $|V|^3$. Can we do lower? (maybe $|V|^2$)
- ▶ The target when augmenting is $d^-(X) \ge k$. For which f can we replace k with f(X)?

We generalized the results of Ito et al. to hypergraphs:

- ► We provided the first combinatorial algorithm for computing a *k*-hyperarc-connected orientation of a hypergraph.
- ▶ We show it is possible to reconfigure a k-hyperarc-connected orientation of a hypergraph into any other, if the hypergraph is (k+1, k+1)-partition-connected.

Open questions:

- ▶ Our upper bound on the number of reorientated hyperarcs is $|V|^3$. Can we do lower? (maybe $|V|^2$)
- ▶ The target when augmenting is $d^-(X) \ge k$. For which f can we replace k with f(X)?

Merci!