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Connectivity

Edge connectivity

A graph G = (V ,E ) is k-edge-connected if and only if for all
non-empty vertex set X ̸= V : d(X ) ≥ k .

This graph is 2-edge-connected.
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Augmentation results

Weak Orientation Theorem (Nash-Williams, 1960)

An undirected graph admits a k-arc-connected orientation if and
only if it is 2k-edge-connected.

Arc-Connectivity Augmentation (Ito et al., 2021)

Let G = (V ,E ) be an undirected (2k + 2)-edge-connected graph,
D be a k-arc-connected orientation of G .
Then, there exist orientations D1,D2, . . . ,Dℓ of G such that

▶ Di is obtained from Di−1 by reversing an arc of Di−1,

▶ ℓ ≤ |V |3,
▶ λ(D) ≤ λ(D1) ≤ λ(D2) ≤ . . . ≤ λ(Dℓ) = k + 1.

Furthermore, such orientations can be found in polynomial time.
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The key idea of Ito et al.

Reversing an (s, t)-path only changes the connectivity of vertex
sets separating s and t.

· · · · · ·

TS

s t

We will iteratively reverse (s, t)-paths connecting a minimal set S
of in-degree k (in-tight T −) to a minimal set T of out-degree k
(out-tight T +).
We call s a source and t a sink.
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The dangers

Connectivity loss by
path-reversal.

s · · ·

s · · ·

Connectivity loss by
arc-reversal.

· · ·· · ·

· · ·· · ·

Useless paths.

s t· · ·

s? t?· · ·
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How to preserve connectivity: path errors

We introduce a new family R− containing the minimum in-tight
sets containing an out-tight set.

R

Restraining our paths to R prevents path-reversal connectivity loss.
Thus, we search for s and t in R.
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How to preserve connectivity: arc errors

We reverse our (s, t)-path from end to start.
For any vertex set X entered that doesn’t contain t, d+(X ) is
temporarily decreased by 1.

· · ·· · ·

Step 1

· · ·· · ·

Step 2

· · ·· · ·

Step 3

Our (s, t)-path must not enter any out-tight set that doesn’t
contain t.

7/18



The context Framework for augmentation The algorithm Hypergraphs Reconfiguration Conclusion

How to preserve connectivity: arc errors

We reverse our (s, t)-path from end to start.
For any vertex set X entered that doesn’t contain t, d+(X ) is
temporarily decreased by 1.

· · ·· · ·

Step 1

· · ·· · ·

Step 2

· · ·· · ·

Step 3

Our (s, t)-path must not enter any out-tight set that doesn’t
contain t.

7/18



The context Framework for augmentation The algorithm Hypergraphs Reconfiguration Conclusion

How to do something: safe sources

A vertex s is a safe source for S ∈ M− if:

▶ (Safe) If s ∈ Y ∈ T + then S ⊂ Y .

▶ (Useful) If s ∈ Z such that d+(Z ) = k + 1 and S ̸⊆ Z then
there exists an out-tight set in Z that doesn’t contain s.

S

Not safe Safe
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Algorithm

▶ Pick a set R ∈ R− (If none, flip orientation).

▶ Pick a safe source s in a minimal set S ∈ T − with S ⊆ R.

▶ Search for a minimum out-tight set T in R.
If the search enters an out-tight set, don’t exit it.

▶ Once the search gets inside a minimum out-tight set T , find a
safe sink t in T .

▶ Reverse the search (s, t)-path!

Because of the search rule, the path never leaves any out-tight set.

Repeat until no tight sets remain =⇒ λ(D) = k + 1.
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Let’s reconfigure!

Context: G is 4-edge-connected and G⃗ is 1-arc-connected.

a b

c

def

r

2

2

2

2

2
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Hypergraphs

Hypergraph

A hypergraph H = (V , E) is
composed of:

▶ Vertices in V

▶ Hyperedges in E , linking
vertices together

Partition-connectivity

H is (k, k)-partition-connected if for any partition P of V , at
least k |P| hyperedges intersect at least 2 members of P:
eH(P) ≥ k|P|.

Partition-connectivity is a stronger version of edge-connectivity.
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Directed Hypergraphs

Directed Hypergraph

A directed hypergraph
H⃗ = (V ,A) is composed of:

▶ Vertices in V

▶ Hyperarcs in A with a
unique head vertex

Hyperarc-connectivity

H⃗ is k-hyperarc-connected if for any non-empty vertex set
X ̸= V , at least k hyperarcs enter X .
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Towards generalization

Theorem on hypergraph orientations (Frank, Király, Király,
2003)

A hypergraph H admits a k-hyperarc-connected orientation if and
only if it is (k , k)-partition-connected.

Most of the previous ideas work for connectivity augmentation!
Instead of finding good paths, we find good hyperpaths and reverse
them.

s

a1

a3

a2

t
(A1, a1)

(A2, a2)
(A3, a3)

(A4, t)
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Our result

Hyperarc-Connectivity Augmentation

Let H = (V ,E ) be a (k +1, k +1)-partition-connected hypergraph
and D be a k-hyperarc-connected orientation of H.
Then, there exist orientations D1,D2, . . . ,Dℓ of H such that

▶ Di is obtained from Di−1 by reorienting a hyperarc of Di−1,

▶ ℓ ≤ |V |3,
▶ λ(D) ≤ λ(D1) ≤ λ(D2) ≤ . . . ≤ λ(Dℓ) = k + 1.

Furthermore, such orientations can be found in polynomial time.

This is the first algorithm to compute a k-hyperarc-connected
orientation of a hypergraph.
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Frank’s result : path and cycle reversing

Reconfiguration of two k-arc-connected orientations (1982)

Given two k-arc-connected orientations D,D ′ of a
2k-edge-connected graph G , there exist k-arc-connected
orientations D = D1,D2, · · · ,Dℓ = D ′ of G such that Di is
obtained from Di−1 by reversing a path or a cycle.

Applying this theorem arc-by-arc may decrease the connectivity by
one temporarily.
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Ito et al.’s result on reconfiguration

Reconfiguration reachability of k-arc-connected orientations

Given two k-arc-connected orientations D,D ′ of a
(2k + 2)-edge-connected graph G , there exist k-arc-connected
orientations D = D1,D2, · · · ,Dℓ = D ′ of G such that Di is
obtained from Di−1 by reversing an arc of Di−1.
Furthermore, such orientations can be found in polynomial time.

We augment D and D ′ to (k + 1)-arc-connectivity, then we apply
Frank’s reconfiguration algorithm arc-by-arc.

D D′

D+ D′+

k-arc-connected

(k + 1)-arc-connected
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It works on hypergraphs

We can adapt the proof of Frank to work on hypergraph
orientations, leading to the following generalization.

Reconfiguration reachability of k-hyper-connected orientations

Given two k-hyperarc-connected orientations D,D′ of a
(k + 1, k + 1)-partition-connected hypergraph H, there exist
k-hyperarc-connected orientations D = D1,D2, · · · ,Dℓ = D′ of H
such that Di is obtained from Di−1 by reorienting an hyperarc of
Di−1.
Furthermore, such orientations can be found in polynomial time.
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Conclusion

We generalized the results of Ito et al. to hypergraphs:

▶ We provided the first combinatorial algorithm for computing a
k-hyperarc-connected orientation of a hypergraph.

▶ We show it is possible to reconfigure a k-hyperarc-connected
orientation of a hypergraph into any other, if the hypergraph
is (k + 1, k + 1)-partition-connected.

Open questions:

▶ Our upper bound on the number of reorientated hyperarcs is
|V |3. Can we do lower? (maybe |V |2)

▶ The target when augmenting is d−(X ) ≥ k . For which f can
we replace k with f (X )?

Merci !
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