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Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

Benjamin Peyrille 1/13



Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

TOKEN SLIDING TOKEN JUMPING

Slide along edges Jump anywhere

Benjamin Peyrille 1/13



Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

TOKEN SLIDING TOKEN JUMPING

-

Slide along edges Jump anywhere

Benjamin Peyrille 1/13



Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

TOKEN SLIDING TOKEN JUMPING

Jump anywhere

Slide along edges

Benjamin Peyrille 1/13



Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

TOKEN SLIDING TOKEN JUMPING

Slide along edges Jump anywhere

Benjamin Peyrille 1/13



Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

TOKEN SLIDING TOKEN JUMPING

Slide along edges Jump anywhere

Benjamin Peyrille 1/13



Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

TOKEN SLIDING TOKEN JUMPING

Slide along edges Jump anywhere

Benjamin Peyrille 1/13



Token sliding and jumping

Setting G = (V,E) : simple graph
I, J : independent sets of G of the same size k > 1
(we draw [ as tokens © and J as tokens @ placed on vertices of G)
Question Can we transform [ into J by moving tokens one-by-one while pre-
serving the independent set property 7

TOKEN SLIDING TOKEN JUMPING

Jump anywhere

Slide along edges

Benjamin Peyrille 1/13



Token Jumping on Surfaces
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Complexity of Token Jumping

TOKEN JUMPING is
» PSPACE-complete for

m subcubic planar graphs of bounded bandwidth (van der Zanden'14,lto et
al."11,Hearn & Demaine’05)
m perfect graphs (Kaminski et al., 2012)

» NP-complete for bipartite graphs (Lokshtanov & Mouawad, 2018)
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» PSPACE-complete for

m subcubic planar graphs of bounded bandwidth (van der Zanden'14,lto et
al."11,Hearn & Demaine’05)
m perfect graphs (Kaminski et al., 2012)

» NP-complete for bipartite graphs (Lokshtanov & Mouawad, 2018)

TOKEN JUMPING admits a polynomial-time algorithm for
» even-hole-free graphs (Kaminski et al., 2012)
» Py-free graphs (Bonsma 2016, Bousquet & Bonamy 2012)
» claw-free graphs (Bonsma et al.'14)
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Parameterized complexity of Token Jumping

A problem is fixed-parameter tractable (FPT) for some parameter k, if it admits an
O(f(k) - poly(n))-time algorithm, where f : N — N is a computable function and n is
the size of the instance.
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Parameterized complexity of Token Jumping

A problem is fixed-parameter tractable (FPT) for some parameter k, if it admits an
O(f(k) - poly(n))-time algorithm, where f : N — N is a computable function and n is

the size of the instance.

Parameterized hardness (Mouawad, 2017)

TOKEN JUMPING is W/([1]-hard (not FPT) when parameterized by the number k
of tokens.
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Parameretized complexity: positive results
Graph G Graph G’

poly-time
— |kernelization algorithm| | —

n vertices f(k) vertices

Kernelization = FPT (bruteforce on f(k) vertices)
If the function f is polynomial, the problem admits a polynomial kernel.
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Parameretized complexity: positive results
Graph G Graph G’

poly-time
— |kernelization algorithm| | —

n vertices f(k) vertices

Kernelization = FPT (bruteforce on f(k) vertices)
If the function f is polynomial, the problem admits a polynomial kernel.

» FPT on planar graphs and K3 ;-free graphs (Ito et al., 2014)
» Polynomial kernel for K; :-free graphs (Bousquet et al., 2017)
» Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al., 2018)
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Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g.
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The problem Token Jumping on Surfaces Kernelization
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Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g.

K33 is not planar (g # 0) K33 embedded on the torus (g = 1)

In a nutshell, the genus of a graph G is the smallest
number of handles required to draw G on a mug.
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Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g.

Main result (Cranston, Miihlenthaler, P., 2024)

TOKEN JUMPING parameterized by the genus g of the input graph and the
number of tokens k admits a kernel of size O((g + k)?). Furthermore, the
kernelization algorithm does not need to compute the genus.
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Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g.

Main result (Cranston, Miihlenthaler, P., 2024)

TOKEN JUMPING parameterized by the genus g of the input graph and the
number of tokens k admits a kernel of size O((g + k)?). Furthermore, the
kernelization algorithm does not need to compute the genus.

Kernelization results applied to graphs on surfaces:

Classes of graphs

Kernel size

For genus g

K3 -free (Ito et al., 14)

Ky t-free (Bousquet et al., 17)
d-degenerate (Lokshtanov et al., 18)
all graphs (This presentation!)

Ramsey((2t + 1)k, t + 3)
O(f(t) - k**)
(2d +1)(2d + 1)!(2k — 1)2d+1
O((g + K))

Ramsey((8g + 7)k, 42 +6)
O(h(g) - k(4g+3)»3“€+3)
(2H(g) — 1)(2H(g) — 1)!(2k — 1)?H(&)1
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Kernelization
[ 1]

First step: Partition

» T: vertices with a token (T = /U J)

» (Ci_: vertices adjacent to at most one element of T
» (C,: vertices adjacent to exactly two elements of T

» (Cs3.: vertices adjacent to least three elements of T

\ ,
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C1_ and C3,: easily bounded

The Heawood number H(g) = | (7 + /I + 48g)/2] is the largest
number of colors required to properly color any graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

C1-| < H(g)- k= O(\E - k).
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oe

C1_ and C3,: easily bounded

The Heawood number H(g) = | (7 + /I + 48g)/2] is the largest
number of colors required to properly color any graph of genus g.
If |Ci—| > H(g) - k, the instance is YES. So we can assume

C1| < H(g) - k = O(\/& - k).

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K34443 as a subgraph.

Using an auxillary graph, we can use Euler's formula to get

C31| < 16g° + 16gk + 8k.
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Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy, ) # 0.
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Co: not clear yet
Let Cy,,,) be the projection class of {u,v} C T, that is
{w:weV—-TstNr(w)={u,v}}
Let {u, v} such that Cy, ) # 0.
There can be an arbitrary number of vertices in Cy, y:

Our goal: reduce |Ca| to size O((g + k)?).

By Euler's formula, the number of non-empty projection classes is at most 6k + 6g.

If [Cruvy| > 8g + 4k, we can replace Cy, .y by an independent set of size 2k.
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The problem Token Jumping on Surfaces Kernelization
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Planar zones
Theorem (Malni¢ and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of
genus g is max(1,4g).
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The problem Token Jumping on Surfaces Kernelization
080000

Planar zones
Theorem (Malni¢ and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v-paths on any graph of
genus g is max(1,4g).

Hence, paths between v and v in Cy, .y divide the surface in at most 4g planar zones.
Y N S i £

SN W :

Four zones for Cy, ,y on a torus.
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Kernelization
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Anatomy of the zone

Each zone has two outer vertices and some inner
vertices.

Inner vertices form induced linear forests in Cy, 1
whose independent sets are large and easy to find.

> Vertices outside a zone cannot be adjacent to inner vertices of Cy, 1.

> Vertices inside a zone can only be adjacent to two vertices of Cy, 1.

Benjamin Peyrille 10/13
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Problem solved

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k  size independent set Ty, ) in Cy, 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
If Cy,v is used in a reconfiguration sequence, we can move all tokens from / to T{u,v}
and do the same for J.
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Problem solved... or is it?

Ciu,y is large (8g +4k) = >4k inner vertices
— >4k size linear forest
= 2k  size independent set Ty, ) in Cy, 3

Recall each token of / is adjacent to at most two inner vertices of Cy,, 3.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from / to T{u,v}
and do the same for J.

So we can assume all Cy, y are of size at most 8g + 4k.

Problem: knowing the genus of the graph or a crossing-free drawing, is hard.

We will find that large linear forest without any information on the genus.
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The algorithm

17:= C{uﬁv}

2 forveV— (C{UN} UY) do

3 if v has at least 3 neighbors in Cy, ,, then
L Z+ Z—N(v)
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The algorithm

1 7= C{uﬁv}

2 forveV— (C{UN} ] Y) do

3 if v has at least 3 neighbors in Cy, ,, then
Z+ Z—N(v)

4 for w € Z do

5 if w has degree at least 3 in G[Z] then
VA VAR

Benjamin Peyrille 12/13



Kernelization

[e]e]ele] Je]

The algorithm

1 7= C{uﬁv}

2 forveV— (C{UN} ] Y) do

3 if v has at least 3 neighbors in Cy, ,, then
Z+ Z—N(v)

4 for w € Z do

5 if w has degree at least 3 in G[Z] then
VA VAR

Benjamin Peyrille 12/13



Kernelization
[e]e]e]e] o)

The algorithm

1 7= C{uﬁv}

2 forveV— (C{u‘v} UY) do

3 if v has at least 3 neighbors in Cy, ,, then
L Z+ Z—N(v)

4 for w € Z do

5 L if w has degree at least 3 in G[Z] then

Z+—7Z—w
6 Remove arbitrarily one vertex from each cycle in
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The algorithm

1 7= C{uﬁv}

2 forveV— (C{u‘v} UY) do

3 if v has at least 3 neighbors in Cy, ,, then
L Z+ Z—N(v)

4 for w € Z do

5 L if w has degree at least 3 in G[Z] then

Z+—7Z—w
6 Remove arbitrarily one vertex from each cycle in
G[2]
7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.
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