
Token Jumping on Surfaces
Joint work with: Daniel W. Cranston and Moritz Mühlenthaler

Benjamin Peyrille
Université Grenoble Alpes

WG 2025, Otzenhausen, June 11 2025

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Token sliding and jumping

Setting G = (V ,E) : simple graph
I , J : independent sets of G of the same size k ≥ 1
(we draw I as tokens and J as tokens placed on vertices of G)

Question Can we transform I into J by moving tokens one-by-one while pre-
serving the independent set property ?

Token Sliding

Slide along edges

Token Jumping

Jump anywhere

Benjamin Peyrille 1/13

The problem Token Jumping on Surfaces Kernelization

Complexity of Token Jumping

Token Jumping is
▶ PSPACE-complete for

subcubic planar graphs of bounded bandwidth (van der Zanden’14,Ito et
al.’11,Hearn & Demaine’05)
perfect graphs (Kamiński et al., 2012)

▶ NP-complete for bipartite graphs (Lokshtanov & Mouawad, 2018)

Token Jumping admits a polynomial-time algorithm for

▶ even-hole-free graphs (Kamiński et al., 2012)

▶ P4-free graphs (Bonsma 2016, Bousquet & Bonamy 2012)

▶ claw-free graphs (Bonsma et al.’14)

Benjamin Peyrille 2/13

The problem Token Jumping on Surfaces Kernelization

Complexity of Token Jumping

Token Jumping is
▶ PSPACE-complete for

subcubic planar graphs of bounded bandwidth (van der Zanden’14,Ito et
al.’11,Hearn & Demaine’05)
perfect graphs (Kamiński et al., 2012)

▶ NP-complete for bipartite graphs (Lokshtanov & Mouawad, 2018)

Token Jumping admits a polynomial-time algorithm for

▶ even-hole-free graphs (Kamiński et al., 2012)

▶ P4-free graphs (Bonsma 2016, Bousquet & Bonamy 2012)

▶ claw-free graphs (Bonsma et al.’14)

Benjamin Peyrille 2/13

The problem Token Jumping on Surfaces Kernelization

Parameterized complexity of Token Jumping

A problem is fixed-parameter tractable (FPT) for some parameter k, if it admits an
O(f (k) · poly(n))-time algorithm, where f : N→ N is a computable function and n is
the size of the instance.

Parameterized hardness (Mouawad, 2017)

Token Jumping is W [1]-hard (not FPT) when parameterized by the number k
of tokens.

Benjamin Peyrille 3/13

The problem Token Jumping on Surfaces Kernelization

Parameterized complexity of Token Jumping

A problem is fixed-parameter tractable (FPT) for some parameter k, if it admits an
O(f (k) · poly(n))-time algorithm, where f : N→ N is a computable function and n is
the size of the instance.

Parameterized hardness (Mouawad, 2017)

Token Jumping is W [1]-hard (not FPT) when parameterized by the number k
of tokens.

Benjamin Peyrille 3/13

The problem Token Jumping on Surfaces Kernelization

Parameretized complexity: positive results

Graph G

n vertices

kernelization algorithm

Graph G ′

f (k) vertices

→ →
poly-time

Kernelization =⇒ FPT (bruteforce on f (k) vertices)
If the function f is polynomial, the problem admits a polynomial kernel.

▶ FPT on planar graphs and K3,t-free graphs (Ito et al., 2014)

▶ Polynomial kernel for Kt,t-free graphs (Bousquet et al., 2017)

▶ Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al., 2018)

Benjamin Peyrille 4/13

The problem Token Jumping on Surfaces Kernelization

Parameretized complexity: positive results

Graph G

n vertices

kernelization algorithm

Graph G ′

f (k) vertices

→ →
poly-time

Kernelization =⇒ FPT (bruteforce on f (k) vertices)
If the function f is polynomial, the problem admits a polynomial kernel.

▶ FPT on planar graphs and K3,t-free graphs (Ito et al., 2014)

▶ Polynomial kernel for Kt,t-free graphs (Bousquet et al., 2017)

▶ Polynomial kernel on graphs of bounded degeneracy (Lokshtanov et al., 2018)

Benjamin Peyrille 4/13

The problem Token Jumping on Surfaces Kernelization

Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P., 2024)

Token Jumping parameterized by the genus g of the input graph and the
number of tokens k admits a kernel of size O((g + k)2). Furthermore, the
kernelization algorithm does not need to compute the genus.

Kernelization results applied to graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al., 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k, 4g + 6)

Kt,t-free (Bousquet et al., 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al., 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 5/13

The problem Token Jumping on Surfaces Kernelization

Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g .

K3,3 is not planar (g ̸= 0)

Main result (Cranston, Mühlenthaler, P., 2024)

Token Jumping parameterized by the genus g of the input graph and the
number of tokens k admits a kernel of size O((g + k)2). Furthermore, the
kernelization algorithm does not need to compute the genus.

Kernelization results applied to graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al., 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k, 4g + 6)

Kt,t-free (Bousquet et al., 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al., 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 5/13

The problem Token Jumping on Surfaces Kernelization

Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g .

K3,3 embedded on the torus (g = 1)

In a nutshell, the genus of a graph G is the smallest
number of handles required to draw G on a mug.

K3,3 is not planar (g ̸= 0)

Main result (Cranston, Mühlenthaler, P., 2024)

Token Jumping parameterized by the genus g of the input graph and the
number of tokens k admits a kernel of size O((g + k)2). Furthermore, the
kernelization algorithm does not need to compute the genus.

Kernelization results applied to graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al., 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k, 4g + 6)

Kt,t-free (Bousquet et al., 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al., 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 5/13

The problem Token Jumping on Surfaces Kernelization

Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P., 2024)

Token Jumping parameterized by the genus g of the input graph and the
number of tokens k admits a kernel of size O((g + k)2). Furthermore, the
kernelization algorithm does not need to compute the genus.

Kernelization results applied to graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al., 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k, 4g + 6)

Kt,t-free (Bousquet et al., 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al., 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 5/13

The problem Token Jumping on Surfaces Kernelization

Surfaces

The genus of a graph G is the smallest integer g such that G admits a crossing-free
drawing on an orientable surface of genus g .

Main result (Cranston, Mühlenthaler, P., 2024)

Token Jumping parameterized by the genus g of the input graph and the
number of tokens k admits a kernel of size O((g + k)2). Furthermore, the
kernelization algorithm does not need to compute the genus.

Kernelization results applied to graphs on surfaces:

Classes of graphs Kernel size For genus g

K3,t-free (Ito et al., 14) Ramsey((2t + 1)k, t + 3) Ramsey((8g + 7)k, 4g + 6)

Kt,t-free (Bousquet et al., 17) O(f (t) · kt·3t) O(h(g) · k(4g+3)·34g+3
)

d-degenerate (Lokshtanov et al., 18) (2d + 1)(2d + 1)!(2k − 1)2d+1 (2H(g)− 1)(2H(g)− 1)!(2k − 1)2H(g)−1

all graphs (This presentation!) O((g + k)2) -

Benjamin Peyrille 5/13

The problem Token Jumping on Surfaces Kernelization

First step: Partition
▶ T : vertices with a token (T = I ∪ J)
▶ C1−: vertices adjacent to at most one element of T
▶ C2: vertices adjacent to exactly two elements of T
▶ C3+: vertices adjacent to least three elements of T

C3+

T

C1−

C2

Benjamin Peyrille 6/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

k = 4

Planar: H(g) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

k = 4

Planar: H(g) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

k = 4

Planar: H(g) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

k = 4

Planar: H(g) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

k = 4

Planar: H(g) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

k = 4

Planar: H(g) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

k = 4

Planar: H(g) = 4|C1−| = 4 · 4 = 16

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C1− and C3+: easily bounded

The Heawood number H(g) =
⌊
(7 +

√
1 + 48g)/2

⌋
is the largest

number of colors required to properly color any graph of genus g .
If |C1−| ≥ H(g) · k , the instance is Yes. So we can assume

|C1−| < H(g) · k = O(
√
g · k).

Theorem (Bouchet, 1978)

A graph of genus g cannot contain K3,4g+3 as a subgraph.

Using an auxillary graph, we can use Euler’s formula to get

|C3+| ≤ 16g2 + 16gk + 8k.

Benjamin Peyrille 7/13

The problem Token Jumping on Surfaces Kernelization

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.

There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: reduce |C2| to size O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

If |C{u,v}| > 8g + 4k , we can replace C{u,v} by an independent set of size 2k.

Benjamin Peyrille 8/13

The problem Token Jumping on Surfaces Kernelization

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: reduce |C2| to size O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

If |C{u,v}| > 8g + 4k , we can replace C{u,v} by an independent set of size 2k.

Benjamin Peyrille 8/13

The problem Token Jumping on Surfaces Kernelization

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: reduce |C2| to size O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

If |C{u,v}| > 8g + 4k , we can replace C{u,v} by an independent set of size 2k.

Benjamin Peyrille 8/13

The problem Token Jumping on Surfaces Kernelization

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: reduce |C2| to size O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

If |C{u,v}| > 8g + 4k , we can replace C{u,v} by an independent set of size 2k.

Benjamin Peyrille 8/13

The problem Token Jumping on Surfaces Kernelization

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: reduce |C2| to size O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

If |C{u,v}| > 8g + 4k , we can replace C{u,v} by an independent set of size 2k.

Benjamin Peyrille 8/13

The problem Token Jumping on Surfaces Kernelization

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: reduce |C2| to size O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

If |C{u,v}| > 8g + 4k , we can replace C{u,v} by an independent set of size 2k.

Benjamin Peyrille 8/13

The problem Token Jumping on Surfaces Kernelization

C2: not clear yet
Let C{u,v} be the projection class of {u, v} ⊆ T , that is
{w : w ∈ V − T s.t NT (w) = {u, v}}.
Let {u, v} such that C{u,v} ̸= ∅.
There can be an arbitrary number of vertices in C{u,v}:

u

v

C{u,v}

Our goal: reduce |C2| to size O((g + k)2).

By Euler’s formula, the number of non-empty projection classes is at most 6k + 6g .

If |C{u,v}| > 8g + 4k , we can replace C{u,v} by an independent set of size 2k.
Benjamin Peyrille 8/13

The problem Token Jumping on Surfaces Kernelization

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v -paths on any graph of
genus g is max(1, 4g).

Hence, paths between u and v in C{u,v} divide the surface in at most 4g planar zones.

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y4

u

v

Four zones for C{u,v} on a torus.

Benjamin Peyrille 9/13

The problem Token Jumping on Surfaces Kernelization

Planar zones

Theorem (Malnič and Mohar, 1992)

The maximum number of non-homotopic internally disjoint u, v -paths on any graph of
genus g is max(1, 4g).

Hence, paths between u and v in C{u,v} divide the surface in at most 4g planar zones.

Y1

Y2

Y2

Y3

Y3

Y4

Y4

Y4

u

v

Four zones for C{u,v} on a torus.
Benjamin Peyrille 9/13

The problem Token Jumping on Surfaces Kernelization

Anatomy of the zone

Each zone has two outer vertices and some inner
vertices.

Inner vertices form induced linear forests in C{u,v}
whose independent sets are large and easy to find.

u

v

a

b

▶ Vertices outside a zone cannot be adjacent to inner vertices of C{u,v}.

▶ Vertices inside a zone can only be adjacent to two vertices of C{u,v}.

Benjamin Peyrille 10/13

The problem Token Jumping on Surfaces Kernelization

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from I to T{u,v}
and do the same for J.

Benjamin Peyrille 11/13

The problem Token Jumping on Surfaces Kernelization

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from I to T{u,v}
and do the same for J.

k

2k

Benjamin Peyrille 11/13

The problem Token Jumping on Surfaces Kernelization

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from I to T{u,v}
and do the same for J.

k

2k

Benjamin Peyrille 11/13

The problem Token Jumping on Surfaces Kernelization

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from I to T{u,v}
and do the same for J.

k

2k

Benjamin Peyrille 11/13

The problem Token Jumping on Surfaces Kernelization

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from I to T{u,v}
and do the same for J.

k

2k

Benjamin Peyrille 11/13

The problem Token Jumping on Surfaces Kernelization

Problem solved

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from I to T{u,v}
and do the same for J.

So we can assume all C{u,v} are of size at most 8g + 4k.

Benjamin Peyrille 11/13

The problem Token Jumping on Surfaces Kernelization

Problem solved... or is it?

C{u,v} is large (8g + 4k) =⇒ ≥ 4k inner vertices
=⇒ ≥ 4k size linear forest
=⇒ 2k size independent set T{u,v} in C{u,v}

Recall each token of I is adjacent to at most two inner vertices of C{u,v}.
If Cu,v is used in a reconfiguration sequence, we can move all tokens from I to T{u,v}
and do the same for J.

So we can assume all C{u,v} are of size at most 8g + 4k.

Problem: knowing the genus of the graph or a crossing-free drawing, is hard.

We will find that large linear forest without any information on the genus.

Benjamin Peyrille 11/13

The problem Token Jumping on Surfaces Kernelization

The algorithm

1 Z := C{u,v}

2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 12/13

The problem Token Jumping on Surfaces Kernelization

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 12/13

The problem Token Jumping on Surfaces Kernelization

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 12/13

The problem Token Jumping on Surfaces Kernelization

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 12/13

The problem Token Jumping on Surfaces Kernelization

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 12/13

The problem Token Jumping on Surfaces Kernelization

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 12/13

The problem Token Jumping on Surfaces Kernelization

The algorithm

1 Z := C{u,v}
2 for v ∈ V − (C{u,v} ∪ Y) do
3 if v has at least 3 neighbors in C{u,v} then

Z ← Z − N(v)

4 for w ∈ Z do
5 if w has degree at least 3 in G [Z] then

Z ← Z − w

6 Remove arbitrarily one vertex from each cycle in
G [Z]

7 return Z

This procedure outputs a linear forest of size at least
equal to the number of inner vertices,
without any information on the genus.

Benjamin Peyrille 12/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

The problem Token Jumping on Surfaces Kernelization

Conclusion
We obtain a kernel of size O((g + k)2) for Token Jumping.

Our algorithm is very simple and requires no information on the genus of the input
graph.

Open question:
▶ Does Token Jumping admit a kernel of size O(g2 + gk + k) ?

A recent result of Cranston and Bousquet seems to imply a kernel of size
O(g2.5 + g1.5k + k).

▶ What other problems can be parameterized in such a way?

Benjamin Peyrille 13/13

	The problem
	Token Jumping on Surfaces
	Kernelization
	Solving C2

